Steady-State Crack Propagation in Pressurized Pipelines Without Backfill

[+] Author and Article Information
M. F. Kanninen, S. G. Sampath

Battelle Columbus Laboratories, Columbus, Ohio

C. Popelar

The Ohio State University, Columbus, Ohio

J. Pressure Vessel Technol 98(1), 56-64 (Feb 01, 1976) (9 pages) doi:10.1115/1.3454326 History: Received March 31, 1975; Online October 25, 2010


In a previous paper, a simplified dynamic-shell theory representation was formulated for steady-state motion in a pipeline without backfill. The present work extends this model by (1) incorporating a gas dynamics treatment to determine the axial variation in the pressure exerted by the gas on the pipe walls, and (2) incorporating a plastic yield hinge behind the crack tip. Solutions to the governing dynamic equations are obtained for these conditions and used to calculate the steady-state dynamic energy release rate as a function of crack speed. In the single full-scale experiment in which an independent estimate of the dynamic fracture energy is available for a pipe without backfill, the model predicts a steady-state speed of 780 fps. This can be compared with measured speeds which ranged from 725 to 830 fps in the test. Because the calculated steady-state dynamic energy release rate exhibits a maximum, it is suggested that this approach may offer a basis for crack arrest design of pipelines.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In