Stress-Intensity Factors for Internal Surface Cracks in Cylindrical Pressure Vessels

[+] Author and Article Information
J. C. Newman

NASA Langley Research Center, Hampton, Va. 23665

I. S. Raju

Joint Institute for Advancement of Flight Sciences, George Washington University at Langley Research Center, Hampton, Va. 23665

J. Pressure Vessel Technol 102(4), 342-346 (Nov 01, 1980) (5 pages) doi:10.1115/1.3263343 History: Received February 29, 1980; Online November 05, 2009


The purpose of this paper is to present stress-intensity factors for a wide range of semi-elliptical surface cracks on the inside of pressurized cylinders. The ratio of crack depth to crack length ranged from 0.2 to 1; the ratio of crack depth to wall thickness ranged from 0.2 to 0.8; and the ratio of wall thickness to vessel radius was 0.1 to 0.25. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employ singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated from a nodal-force method. An equation for the stress-intensity factors was obtained from the results of the present analysis. The equation applies over a wide range of configuration parameters and was within about 5 percent of the present results. A comparison was also made between the present results and other analyses of internal surface cracks in cylinders. The results from a boundary-integral equation method were in good agreement (± 2 percent) and those from another finite-element method were in fair agreement (± 8 percent) with the present results.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In