Stress Intensity Factors due to Residual Stresses in Thin-Walled Girth-Welded Pipes

[+] Author and Article Information
E. F. Rybicki

Mechanical Engineering Department, The University of Tulsa, Tulsa, Okla. 74104

R. B. Stonesifer

Georgia Institute of Technology, Atlanta, Ga. 30332

R. J. Olson

Battelle, Houston, Tex. 77027

J. Pressure Vessel Technol 103(1), 66-75 (Feb 01, 1981) (10 pages) doi:10.1115/1.3263372 History: Received January 16, 1979; Revised June 26, 1980; Online November 05, 2009


The effect of a girth-weld-induced residual stress field on the linear elastic fracture mechanics of a thin-walled pipe is examined. The procedure for using the residual stress distribution to compute KI and KII for a circumferential crack which is growing radially is described. In addition to the two-pass girth weld, stress intensity factors are computed for a residual stress distribution in a flat plate and for a hypothetical residual stress state in a second thin-walled pipe. The computed stress intensity factor for the flat plate geometry and its residual stress distribution are compared with a solution from the literature as a check on the computational procedure. The through-the-thickness residual stress distribution due to the two-pass girth weld is similar to a half-cosine wave. For purposes of comparison, the hypothetical through-the-thickness distribution selected for the second pipe is similar to a full cosine wave. The stress intensity factor is presented as a function of crack depth for a crack initiating on the inner surface of the pipe. The redistribution of residual stresses due to crack growth is also shown for selected crack lengths. The study shows that residual stress-induced crack growth in pipes can be significantly different from that in flat plates due to the possibility of locked-in residual bending moments in the pipe. These locked-in moments can have effects similar to externally applied loads and can either promote or restrain crack growth. A residual stress distribution is illustrated in which crack growth, if initiated, would continue through the entire wall. Also, a residual stress distribution is illustrated for which the crack could arrest after a certain amount of growth.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In