0
RESEARCH PAPERS

Progress in Collapse Analyses

[+] Author and Article Information
E. Riks

National Aerospace Laboratory NLR, Amsterdam, The Netherlands

J. Pressure Vessel Technol 109(1), 33-41 (Feb 01, 1987) (9 pages) doi:10.1115/1.3264853 History: Received January 10, 1985; Revised May 21, 1986; Online November 05, 2009

Abstract

In the field of finite element structural analysis, the computation of collapse states of structures prone to unstable behavior has long been considered a difficult if not intractable problem. Only recently have procedures that deal effectively with this difficulty found their way in general-purpose finite element codes. Although the explanation for the cause of the so-called limit point obstacle is actually simple—an inappropriate parameterization of the governing equations in the neighborhood of the limit point—this cause does not seem to have been widely understood in the period of development of the finite element technique. In this paper, some of the remedies that have been proposed to overcome the problems are reviewed, including the principle of adaptive parameterization which is now the basis of a new procedure for collapse analysis in the finite element code STAGS. The discussion also includes the treatment of simple bifurcation points because unstable bifurcation can be considered a special form of collapse. It can be concluded that collapse problems, in the sense discussed in this paper, no longer present difficulties that exceed those normally encountered during the solution of nonlinear deformation paths. Further developments, in particular those with respect to improved efficiency, are in progress. Some of the promising ventures in this direction are indicated.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In