0
RESEARCH PAPERS

Further Development of a Model for Predicting Corrosion Fatigue Crack Growth in Reactor Pressure Vessel Steels

[+] Author and Article Information
J. D. Gilman

Electric Power Research Institute, Palo Alto, Calif. 94303

J. Pressure Vessel Technol 109(3), 340-346 (Aug 01, 1987) (7 pages) doi:10.1115/1.3264875 History: Received May 14, 1987; Online November 05, 2009

Abstract

Analysis of fatigue crack growth data for low-alloy steel shows that the influence of cyclic frequency in simulated LWR environments can be interpreted as the superposition of a time-dependent, corrosion-assisted crack growth rate upon an increment predicted by a Paris law. The time-dependent component increases monotonically to a maximum of about 6×10−5 mm/s as stress cycling becomes more aggressive. A useful measure of aggressiveness is the average time rate of crack advance due to the Paris law component alone; i.e., A ΔK n × frequency. The result suggests that current ASME Code methods for flaw assessment are highly conservative in some regimes of stress and frequency, but there is a possibility of growth rates well above the ASME XI, Appendix A curves in a very low-frequency, high-stress regime. An upper bound to the time rate of corrosion-assisted crack growth in low-alloy steel is well supported by the data. The threshold conditions for the onset of this high rate are less well defined and require further investigation.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In