Fatigue Life Prediction of an Autofrettaged Thick-Walled Pressure Vessel With an External Groove

[+] Author and Article Information
S. K. Koh

Research Center Power Generation Department, Korea Electric Power Co., Daejon, Korea

R. I. Stephens

Mechanical Engineering Department, The University of Iowa, Iowa City, IA 52242

J. Pressure Vessel Technol 113(3), 368-374 (Aug 01, 1991) (7 pages) doi:10.1115/1.2928768 History: Received February 24, 1990; Revised January 16, 1991; Online June 17, 2008


An autofrettaged thick-walled pressure vessel with an external groove subjected to a pulsating internal pressure can have fatigue failures at the external groove root due to the combination of tensile autofrettage residual stress, operating stress, and stress concentration. To predict the fatigue life of the autofrettaged thick-walled pressure vessel with an external groove, the local strain approach was applied. The residual stress distribution due to autofrettage and the operating stress distribution due to internal pressure were determined using finite element analysis which resulted in theoretical stress concentration factors. To account for the mean stress effects on the fatigue life prediction of the pressure vessel, low-cycle fatigue behavior with several strain ratios was obtained using smooth axial specimens taken from the ASTM A723 thick-walled steel pressure vessel. Fatigue life predictions were made by incorporating the local strains determined from the linear rule and Neuber’s rule and the Morrow and SWT mean stress parameters determined from low-cycle fatigue tests. The predicted fatigue lives were within factors of 2 to 4, compared to simulated experimental fatigue lives based upon fatigue cracks of 2.5 mm in length. These procedures appear to be realistic for evaluating fatigue lives for this complex pressure vessel.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In