Fluid-Structure Dynamics With a Modal Hybrid Method

[+] Author and Article Information
B. Brenneman, M. K. Au-Yang

B&W Nuclear Service Company, Lynchburg, VA 24506-0935

J. Pressure Vessel Technol 114(2), 133-138 (May 01, 1992) (6 pages) doi:10.1115/1.2929020 History: Received April 08, 1991; Revised December 03, 1991; Online June 17, 2008


Large structures in nuclear power plants are often separated by very thin fluid-filled cavities. For example, core support structures, thermal shields, and reactor vessels are usually large concentric cylindrical shells with annuli between them as small as 2 percent of the shell diameter. Such thin cavities cause the structures to be very strongly coupled, and such coupling must be accurately modeled to predict the dynamic responses of new designs to turbulence, pump acoustic loading, loss-of-coolant accidents, and seismic events. This paper summarizes a very versatile and efficient method of solving these problems with small personal computers. Among other things, this method uses component modal synthesis with the hybrid approach, and the solution of the resulting unsymmetric eigenvalue problem for the coupled vibration modes. System responses are then found in terms of “right” and “left” eigenvectors. Comparisons with test results are also presented.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In