Modeling of Notch Effects on Stress Corrosion Cracking

[+] Author and Article Information
P. S. Maiya

Materials and Components Technology Division, Argonne National Laboratory, Argonne, IL 60439

B. K. Pai

Department of Engineering, Purdue University Calumet, Hammond, IN 46323

J. Pressure Vessel Technol 114(2), 171-177 (May 01, 1992) (7 pages) doi:10.1115/1.2929025 History: Received June 09, 1991; Revised October 30, 1991; Online June 17, 2008


The intergranular stress corrosion cracking (IGSCC) of sensitized Type 304 stainless steel (SS) has been investigated by slow strain rate tests (SSRTs) in 289°C water containing sulfate impurity. Both smooth and circumferentially notched specimens were used to assess the effects of strain concentrations on stress corrosion cracking (SCC). Experiments were conducted over a range of nominal strain rates of 10−5 to 10−7 s−1 . A comparison of the results observed for the smooth and notched specimens suggests that the estimated growth rates of small cracks in SSRT specimen geometry is influenced by the presence of strain concentrations. In particular, the average crack growth rates estimated from tests performed at the same nominal strain rate are observed to increase with the notch depth, and power-law relationships exist between strain rate and SCC parameters such as failure time and crack growth rate. The strain concentration factors at the notch roots of Type 304 specimens subjected to axial load have been estimated by finite-element elastic-plastic stress analyses, as well as by Neuber’s rule. The nominal and crack-tip strain rate effects on SCC in both smooth and notched specimens are interpreted in terms of a model based on elastic-plastic fracture mechanics and film-rupture mechanisms that invoke diffusion-controlled SCC growth kinetics.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In