Coupling of Rotor-Gear-Casing Vibrations During Extreme Operating Events

[+] Author and Article Information
F. K. Choy, J. Padovan, Y. F. Ruan

Department of Mechanical Engineering, University of Akron, Akron, OH 44325-3903

J. Pressure Vessel Technol 114(4), 464-471 (Nov 01, 1992) (8 pages) doi:10.1115/1.2929256 History: Received February 07, 1991; Revised August 17, 1992; Online June 17, 2008


During extreme operating environments (i.e., seismic events, base motion-induced vibrations, etc.), the coupled vibrations developed between the rotors, bearings, gears and enclosing structure of gear-driven rotating equipment can be quite substantial. Generally, such large vibrational amplitudes may lead to failures in both the rotor-gearing system and/or the casing structure. This paper simulates the dynamic behavior of rotor-bearing-gear system resulting from motion of the enclosed structure. The modal synthesis approach is used in this study to synthesize the dynamics of the rotor systems with the vibrations of their casing structure in modal coordinates. Modal characteristics of the rotor-bearing-gear systems are evaluated using the matrix transfer technique, while the modal parameters for the casing structure are developed through a finite element model using NASTRAN. The modal accelerations calculated are integrated through a numerical algorithm to generate modal transient vibration analysis. Vibration results are examined in both time and frequency domains to develop representations for the coupled dynamics generated during extreme operating conditions. Typical three-rotor bull gear-driven power plant equipment (compressors, pumps, etc.) is used as an example to demonstrate the procedure developed.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In