Study on the Vibrational Characteristics of a Tube Array Caused by Two-Phase Flow—Part 2: Fluidelastic Vibration

[+] Author and Article Information
T. Nakamura, K. Fujita, K. Kawanishi, N. Yamaguchi, A. Tsuge

Takasago Research and Development Center, Mitsubishi Heavy Industries, Limited, Hyogo, Japan

J. Pressure Vessel Technol 114(4), 479-485 (Nov 01, 1992) (7 pages) doi:10.1115/1.2929258 History: Received May 01, 1991; Revised July 15, 1992; Online June 17, 2008


Fluidelastic vibration of a tube array caused by two-phase flow has been reported in some papers. The critical flow velocity is usually estimated with a simple Connors-type criterion which is based on average flow velocity, average fluid mass density and damping in two-phase flow. However, there is no explanation why this simple criterion can be used or how the fluidelastic instability occurs by two-phase flow. This paper shows the experimental results on the fluidelastic vibration both by air-water two-phase flow and by steam-water flow in the condition of up to 7.0 MPa in pressure and to 284°C in temperature, and a new criterion based on an assumption of energy balance is here introduced using a “true” flow velocity. However, the comparison with the experimental data indicates that an intermittently rising slug speed, which has been introduced in Part 1, in slug or in froth flow region, should be used, and a modified new criteria for slug or froth flow region is derived. In addition, the new criteria is compared with the usual Connors-type criteria, which greatly depend on the estimation of the damping in two-phase flow. The agreement of both criteria is revealed to be in the vicinity of the variance of the unknown parameters in the usual criteria.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In