0
RESEARCH PAPERS

A Procedure to Predict Solid Particle Erosion in Elbows and Tees

[+] Author and Article Information
S. A. Shirazi, J. R. Shadley, B. S. McLaury, E. F. Rybicki

Mechanical Engineering Department, The University of Tulsa, 600 South College Avenue, Tulsa, OK 74104-2397

J. Pressure Vessel Technol 117(1), 45-52 (Feb 01, 1995) (8 pages) doi:10.1115/1.2842089 History: Received October 18, 1993; Revised September 20, 1994; Online February 11, 2008

Abstract

A semi-empirical procedure has been developed for predicting erosion rates in pipe geometries, such as elbows and tees. The procedure can be used to estimate safe operating conditions and velocities in oil and gas production where sand is present. In the proposed procedure, a concept is introduced that allows determination of erosion rate for different pipe geometries. In the procedure, based on empirical observations, the erosion rate is related to the impact velocity of sand particles on a pipe fitting wall. A simplified particle tracking model is developed and is used to estimate the impact velocity of sand particles moving in a stagnation region near the pipe wall. A new concept of equivalent stagnation length allows the simplified procedure to be applicable to actual pipe geometries. The “equivalent stagnation regions” of an elbow and a tee geometry of different sizes are obtained from experimental data for small pipe diameters, and a computational model is used to extend the procedure to larger pipe diameters. Currently, the prediction method applies to mild steel and accounts for the effects of sand size, shape, and density; fluid density, viscosity, and flow speed; and pipe size and shape. The proposed method has been verified for gas and liquid flows through several comparisons with experimental data reported in the literature. The results of the model accurately predict the effects of sand size and fluid viscosity observed in the experiments. Furthermore, predicted erosion rates showed good agreement with experimental data for gas, liquid, and gas-liquid flows in several 50.8-mm (2-in.) elbows and tees.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In