0
RESEARCH PAPERS

The Prediction of Wear in Fluidized Beds

[+] Author and Article Information
W. A. Rogers

EG & G Technical Services of West Virginia, Inc., Morgantown, WV 26507-0880

J. Pressure Vessel Technol 117(2), 142-149 (May 01, 1995) (8 pages) doi:10.1115/1.2842101 History: Received July 15, 1994; Revised October 24, 1994; Online February 11, 2008

Abstract

A procedure is formulated to model impact and abrasion wear of surfaces exposed to a fluidized bed. A methodology adapting a single-particle wear model and the kinetic theory of gases to granular flows is used to develop a model accounting for impact wear from all possible particle collisions. Abrasive wear is modeled using a single-particle abrasion model adapted to describe the effects of many abrading particles. Parameters describing granular flow are necessary for evaluation of the resulting wear expressions. They are determined by numerical solution of the conservation equations describing fluidized-bed hydrodynamics. Additional parameters appear in the wear expressions which describe the contact between individual fluidized particles and the wearing surface. These are determined by an optimization procedure which minimizes error between predicted and measured wear rates. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predication in fluidized beds.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In