0
RESEARCH PAPERS

Elastoplastic Analysis of Layered Metal Matrix Composite Cylinders—Part I: Theory

[+] Author and Article Information
R. S. Salzar, M.-J. Pindera, F. W. Barton

Department of Civil Engineering and Applied Mechanics, University of Virginia, Charlottesville, VA 22903-2442

J. Pressure Vessel Technol 118(1), 13-20 (Feb 01, 1996) (8 pages) doi:10.1115/1.2842155 History: Received April 13, 1995; Revised July 10, 1995; Online February 11, 2008

Abstract

An exact elastic-plastic analytical solution for an arbitrarily laminated metal matrix composite tube subjected to axisymmetric thermo-mechanical and torsional loading is presented. First, exact solutions for transversely isotropic and monoclinic (off-axis) elastoplastic cylindrical shells are developed which are then reformulated in terms of the interfacial displacements as the fundamental unknowns by constructing a local stiffness matrix for the shell. Assembly of the local stiffness matrices into a global stiffness matrix in a particular manner ensures satisfaction of interfacial traction and displacement continuity conditions, as well as the external boundary conditions. Due to the lack of a general macroscopic constitutive theory for the elastic-plastic response of unidirectional metal matrix composites, the micromechanics method of cells model is employed to calculate the effective elastic-plastic properties of the individual layers used in determining the elements of the local and thus global stiffness matrices. The resulting system of equations is then solved using Mendelson’s iterative method of successive elastic solutions developed for elastoplastic boundary-value problems. Part I of the paper outlines the aforementioned solution strategy. In Part II (Salzar et al., 1996) this solution strategy is first validated by comparison with available closed-form solutions as well as with results obtained using the finite-element approach. Subsequently, examples are presented that illustrate the utility of the developed solution methodology in predicting the elastic-plastic response of arbitrarily laminated metal matrix composite tubes. In particular, optimization of the response of composite tubes under internal pressure is considered through the use of functionally graded architectures.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In