Use of Stress-Strength Model in Determination of Safety Factor for Pressure Vessel Design

[+] Author and Article Information
S. Quin, G. E. O. Widera

Department of Mechanical and Industrial Engineering, Marquette University, 1515 West Wisconsin Avenue, Milwaukee, WI 53233

J. Pressure Vessel Technol 118(1), 27-32 (Feb 01, 1996) (6 pages) doi:10.1115/1.2842158 History: Received August 09, 1994; Revised May 09, 1995; Online February 11, 2008


In pressure vessel design, the values of safety factor are still determined on the basis of engineering experience. Thus, they cannot properly reflect the influence of the consequences of failure and the variabilities in stress and strength. As a result, designsare often excessively conservative, while on the other hand, the possibility of failure still exists. Two approaches for determining the value of the safety factor, which are based on reliability analysis, are presented in this paper. As a result of a comparison, one approach based on a stress-strength model is found to be appropriate for pressure vessel design practice. By transforming the interference parts of the distributions of stress and strength into equivalent normal distributions, the approach allows stress and strength to have arbitrary distributions. Three examples, one in which a vessel is subjected to internal pressure, one in which a tall vessel is subjected to combined loads, and one in which a vessel is subjected to external pressure, are given in the paper. From threexamples, the principles for determining target reliability and the factors affecting the safety factor are discussed. It is concluded that by using the approach presented in this paper for pressure vessel design, different consequences of failure as well as variabilities in stress and strength can be taken into account. The approach yields a value for the safety factor that leads to a design which will be safer and yet more economical.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In