0
RESEARCH PAPERS

Analyses of Possible Failure Mechanisms and Root Failure Causes in Power Plant Components Using Neural Networks and Structural Failure Database

[+] Author and Article Information
S. Yoshimura

Department of Quantum Engineering and Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113, Japan

A. S. Jovanovic

MPA, University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany

J. Pressure Vessel Technol 118(2), 237-246 (May 01, 1996) (10 pages) doi:10.1115/1.2842186 History: Received April 11, 1995; Revised December 04, 1995; Online February 11, 2008

Abstract

This paper describes analyses of case studies on failure of structural components in power plants using hierarchical (multilayer) neural networks. Using selected test data about case studies stored in the structural failure database of a knowledge-based system, the network is trained: either to predict possible failure mechanisms like creep, overheating (OH), or overstressing (OS)-induced failure (network of Type A), or to classify a root failure cause of each case study into either a primary or secondary cause (network of Type B). In the present study, the primary root cause is defined as “manufacturing, material or design-induced causes,” while the secondary one as “not manufacturing, material or design-induced causes, e.g., failures due to operation or mal-operation.” An ordinary three-layer neural network employing the back propagation algorithm with the momentum method is utilized in this study. The results clearly show that the neural network is a powerful tool for analyzing case studies of failure in structural components. For example, the trained network of Type A predicts creep-induced failure in unknown case studies with an accuracy of 86 percent, while the network of Type B classifies root failure causes of unknown case studies with an accuracy of 88 percent. It should be noted that, due to a shortage of available case studies, an appropriate selection of case studies and input parameters to be used for network training was necessary in order to attain high accuracy. A collection of more case studies should, however, resolve this problem, and improve the accuracy of the analyses. An analysis module for case studies using the neural network has also been developed and successfully implemented in a knowledge-based system.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In