0
RESEARCH PAPERS

Impacting Effects of Seismic Loading in Feeder Pipes of PHWR Power Plants

[+] Author and Article Information
R. Kumar

Desein Consulting Engineers, New Delhi, India

J. Pressure Vessel Technol 118(3), 351-356 (Aug 01, 1996) (6 pages) doi:10.1115/1.2842199 History: Received December 08, 1994; Revised January 02, 1995; Online February 11, 2008

Abstract

The core of a pressurized heavy water reactor (PHWR) consists of a large number of fuel channels. These fuel channels are connected to the feeder pipes through which the heavy water flows and transports heat from the reactor core to the steam generators. The feeder pipes are several hundreds in number. They run close to each other with small gaps and have several bends. Thus they represent a complex piping system. Under seismic loading, the adjacent feeder pipes may impact each other. In this paper a simplified procedure has been established to assess such impacting effects. The results of the proposed analysis include bending moment and impact force, which provide the stresses due to impacting effects. These results are plotted in nondimensional form so that they could be utilized for any set of feeder pipes. The procedure used for studying the impacting effects includes seismic analysis of individual feeder pipes without impacting effects, selection of pipes for impact analysis, and estimating their maximum impact velocity. Based on the static and dynamic characteristics of the selected feeder pipes, the maximum bending moment, impact force, and stresses are obtained. The results of this study are useful for quick evaluation of the impacting effects in feeder pipes.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In