Fracture Analysis of Multiple Cracks in a Spinning Cylinder Experiment

[+] Author and Article Information
J. A. Keeney, B. R. Bass

Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, TN 3783-8056

J. Pressure Vessel Technol 119(2), 232-235 (May 01, 1997) (4 pages) doi:10.1115/1.2842290 History: Received August 28, 1996; Revised November 15, 1996; Online February 11, 2008


This paper presents finite-element analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The NESC was organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards. The objective of the NESC-1 project is to focus on a complete procedure for assessing the structural integrity of aged reactor pressure vessels. Current plans for the testing program call for two large cracks to be installed in the NESC-1 cylinder separated by 90 deg. Three-dimensional finite-element analyses were carried out to determine: 1) the extent of interaction between multiple cracks in the cylinder; and 2) the predicted effects of using an initial cylinder temperature of 295°C and coolant temperature of 5°C in the experiment. The cylinder was modeled with innersurface through-clad cracks having a depth of 74 mm and aspect ratio of 2:1. The cylinder specimen was subjected to centrifugal loading followed by a thermal shock and analyzed with a thermo-elastic-plastic material model. The analytical results indicate that the stress-intensity factor changes less than 0.2 percent between a model with one crack and a model with four cracks evenly spaced around the circumference. Cleavage initiation is likely to be achieved for initial and coolant temperatures of 295 and 5°C, respectively.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In