0
RESEARCH PAPERS

Flow-Induced Wear in Steam Generator Tubes—Prediction Versus Operational Experience

[+] Author and Article Information
M. K. Au-Yang

Framatome Technologies, 3315 Old Forest Road, Lynchburg, VA 24501

J. Pressure Vessel Technol 120(2), 138-143 (May 01, 1998) (6 pages) doi:10.1115/1.2842231 History: Received November 01, 1997; Revised January 30, 1998; Online February 11, 2008

Abstract

Many nuclear steam generators have accumulated more than 10 effective-full-power-years of operation. Eddy-current inspections revealed that a number of these steam generator tubes, notably those located in high local cross-flow regions, have indications of wear at some support plate elevations after 5 to 10 yr of effective-full-power operations. In the last 5 yr, a number of technical papers on nonlinear tube bundle dynamics has been published to address the effect of tube and support plate interactions. At the same time, test data relating wear and tube wall thickness losses for different material combinations and different support plate geometries became available. Based on the available data in the literature, as well as data obtained in the author’s affiliation, this paper assesses the cumulative tube wall wear after 5, 10, and 15 effective-full-power years of operation of a typical commercial nuclear steam generator, using different wear models. It is hoped that this study will shed some light on the probable mechanism that caused the observed wear in today’s operating nuclear steam generators.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In