0
TECHNICAL PAPERS

Evaluation of the Integrity of PWR Bimetallic Welds

[+] Author and Article Information
Josette Devaux, Gérard Mottet, Jean-Michel Bergheau

Systus International 69485 Lyon Cedex 03, France

Surender K. Bhandari

Framatome, Tour Framatome, 92084 Paris La Défense Cedex, France

Claude Faidy

EDF/SEPTEN, 69628 Villeurbanne, France

J. Pressure Vessel Technol 122(3), 368-373 (Apr 05, 2000) (6 pages) doi:10.1115/1.556194 History: Received February 01, 2000; Revised April 05, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bergheau, J.-M., and Leblond, J.-B., 1991, “Coupling Between Heat Flow, Metallurgy and Stress-strain Computations in Steels—The Approach Developed in the Computer Code SYSWELD for Welding or Quenching,” Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M. R. Ozgu, and K. W. Mahin. eds., The Minerals, Metals & Materials Society, pp. 203–210.
Leblond J.-B., Pont D., Devaux J., Bru D., and Bergheau J.-M., 1997, “Metallurgical and Mechanical Consequences of Phase Transformations in Numerical Simulations of Welding Processes,” Modeling in Welding, Hot Powder Forming and Casting, Chap. 4, L. Karlsson, ed., ASM International, pp. 61–89.
Leblond,  J.-B., and Devaux,  J.-C., 1984, “A New Kinetic Model for Anisothermal Metallurgical Transformations in Steels Including the Effect of Austenit Grain Size,” Acta Metall., 32, pp. 137–146.
Karlsson L., and Lindgren, L.-E., 1991, “Combined Heat and Stress-Strain Calculations,” Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M. R. Ozgu, and K. W. Mahin, eds, The Minerals, Metals & Materials Society, pp. 187–202.
Leblond,  J.-B., Mottet,  G., and Devaux,  J.-C., 1986, “A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformations—I: Derivation of General Relations,” J. Mech. Phys. Solids, 34, pp. 395–409.
Greenwood,  G. W., and Johnson,  R. H., 1965, “The Deformation of Metals Under Small Stresses During Phase Transformations,” Proc. R. Soc. London, Ser. A, 283, pp. 403–422.
Leblond,  J.-B., Mottet,  G., and Devaux,  J.-C., 1986, “A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformations—II: Study of Classical Plasticity for Ideal-Plastic Phases,” J. Mech. Phys. Solids, 34, pp. 411–432.
Leblond,  J.-B., Devaux,  J., and Devaux,  J.-C., 1989, “Mathematical Modeling of Transformation Plasticity in Steels—I: Case of Ideal-Plastic Phases,” Int. J. Plast.,5, pp. 551–572.
Leblond,  J.-B., 1989, “Mathematical Modeling of Transformation Plasticity in Steels—II: Coupling With Strain Hardening Phenomena,” Int. J. Plast.,5, pp. 573–591.
Leblond, J.-B., 1989, “Simulation numérique du soudage—Modèle de viscoplasticite,” FRAMASOFT Internal Report, CSS.L.NT.89/4015.
Bru, D., 1993, “Analyze du comportement d’un dėfaut extérieur situė dans le beurrage d’une liaison bimétallique—Rapport A: Présentation des travaux-Annexe 1: caractéristiques physiques des matériaux utilisées dans les simulations numériques,” FRAMASOFT+CSI Internal Report, LESW93/2015.
Todeschini, P., 1992, “Mesures de contraintes par diffraction de rayons X en peau externe de la jonctioàn bi-métallique de la tubulure de cuve REP H2 de IRAN 1”, EDF Internal note HT-41/NEQ 1368-A, EDF-DER Renardières, France, Apr.
Pineau, A., 1981, “Review of Fracture Micromechanisms and a Local Approach to Predicting Crack Resistance in Low Strength Steels,” Advances in Fracture Research, ICF5, Pergamon, Vol. 2, pp. 553–580.
Devaux, J. C., Mottet, G., Houssin, B., and Pelissier Tanon, A., 1987, “Prediction of Overall Toughness of Bimetallic Welds Through Numerical Analysis According to the Local Approach of Tearing Fracture,” Numerical Methods in Fracture Mechanics, A. R. Luxmoore, D. R. J. Owen, Y. P. S. Rajapakse, and M. F. Kanninen, eds., Pineridge Press, pp. 325–335.
Rice,  J. R., and Tracey,  D. M., 1969, “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” J. Mech. Phys. Solids, 17, p. 201.
Destuynder,  Ph., and Djoua,  M., 1981, “Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile,” Math. Methods Appl. Sci., 3, pp. 70–87.
Gilles, Ph., Mourgue, Ph., Lienard, C., and Bois, C., 1992, “Efficiency and Accuracy of the G-θ Domain Integral for Elasto-Plastic Crack Driving Force Computations,” Proc., ICCES’92.

Figures

Grahic Jump Location
Typical bi-metallic joint
Grahic Jump Location
Interactions between physical phenomena (couplings indicated with a dotted line are neglected)
Grahic Jump Location
Mesh (1417 elements, 3708 nodes)—manufacturing procedure—defect location
Grahic Jump Location
Longitudinal stress contours (top: complete simulation; bottom: simplified simulation)
Grahic Jump Location
Hoop stress contours (top: complete simulation; bottom: simplified simulation)
Grahic Jump Location
Comparison between computed and measured longitudinal stresses along the outer surface
Grahic Jump Location
Comparison between computed and measured hoop stresses along the outer surface
Grahic Jump Location
Pressure and temperature evolutions applied during the three stages of the loading
Grahic Jump Location
Mesh of the multi-material CT50 specimen
Grahic Jump Location
Deformed shape of the defect after the opening stage
Grahic Jump Location
Relative displacements of the crack lips (400 μm from the crack tip)
Grahic Jump Location
J values for the different loading steps

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In