0
TECHNICAL PAPERS

A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential

[+] Author and Article Information
Joseph L. Rose

Engineering Science & Mechanics Department, The Pennsylvania State University, University Park, PA 16802e-mail: jlresm@engr.psu.edu

J. Pressure Vessel Technol 124(3), 273-282 (Jul 26, 2002) (10 pages) doi:10.1115/1.1491272 History: Received April 03, 2002; Online July 26, 2002
Copyright © 2002 by ASME
Topics: Inspection , Waves
Your Session has timed out. Please sign back in to continue.

References

Viktorov, I. A., 1967, Rayleigh and Lamb Waves—Physical Theory and Applications, Plenum Press, New York, NY.
Achenbach, J. D., 1984, Wave Propagation in Elastic Solids, North-Holland Publishing Co., New York, NY.
Miklowitz, J., 1978, The Theory of Elastic Waves and Waveguides, North Holland Publishing Co., New York, NY, pp. 409–430; 1984, North-Holland Series in Applied Mathematics and Mechanics, eds., H. A. Lauwerier and W. T. Koiter.
Kino, C. S., 1987, Acoustic Waves: Devices, Imaging and Digital Signal Processing, Prentice Hall Inc., N.J.
Auld, B. A., 1990, Acoustic Fields and Waves in Solids, Vol. 1 and 2, Second edition.; Kreiger Publishing Co., FL.
Graff, K. F., 1991, Wave Motion in Elastic Solids, Dover Publications Inc., New York.
Nayfeh, A. H., 1995, Wave Propagation in Layered Anisotropic Media With Applications to Composites, North-Holland, Elsevier Science B. V., The Netherlands.
Rose, J. L., 1999, Ultrasonic Waves in Solid Media, Cambridge University Press.
Thompson,  R. B., Lee,  S. C., and Smith,  J. F., 1987, “Relative Anisotropies of Plane Waves and Guided Modes in Thin Orthotropic Plates: Implication for Texture Characterization,” Ultrasonics, 25, pp. 133–137.
Datta, S. K., Shah, A. H., Chakraborty, T., and Bratton, R. L., 1988, Wave Propagation in Laminated Composite Plates; anisotropy and interface Effects, Wave Propagation in Structural Composites, ASME AMD-Vol. 90, A. K. Mal and T. C. T. Ting, eds., pp. 39–52.
Mal,  A. K., 1988, “Wave Propagation in Layered Composite Laminates Under Periodical Surface Loads,” Wave Motion, 10, pp. 257–266.
Nayfeh,  A. H., and Chimenti,  D. E., 1988, “Propagation of Guided Waves in Fluid-Coupled Plates of Fiber-Reinforced Composite,” J. Acoust. Soc. Am., 83, pp. 1736–1743.
Nagy,  P. B., and Adler,  L., 1989, “Nondestructive Evaluation of Adhesive Joints by Guided Waves,” J. Appl. Phys., 66, pp. 4658–4663.
Rokhlin,  S. I., and Wang,  Y. J., 1991, “Equivalent Boundary Conditions for Thin Orthotropic Layer Between Two Solids, Reflection, Refraction and Interface Waves,” J. Acoust. Soc. Am., 89, pp. 503–515.
Ditri,  J. J., and Rose,  J. L., 1992, “Excitation of Guided Elastic Wave Modes in Hollow Cylinders by Applied Surface Tractions,” J. Appl. Phys., 72, pp. 2589–2597.
Pilarski,  A., Ditri,  J. J., and Rose,  J. L., 1993, “Remarks on Symmetric Lamb Waves With Dominant Longitudinal Displacements,” J. Acoust. Soc. Am., 93, pp. 2228–2230, Apr.
Jansen,  D. P., and Hutchins,  D. A., 1992, “Immersion Tomography Using Rayleigh and Lamb Waves,” Ultrasonics, 30, pp. 245–254.
Ditri,  J. J., and Rose,  J. L., 1994, “Excitation of Guided Waves in Generally Anisotropic Layers Using Finite Sources,” ASME J. Appl. Mech., 61, pp. 330–338.
Rose,  J. L., Ditri,  J., and Pilarski,  A., 1994, “Wave Mechanics in Acousto-Ultrasonic Nondestructive Evaluation,” J. Acoust. Emiss., 12, pp. 23–26.
Yapura,  C. L., and Kinra,  V., 1995, “Guided Waves in a Fluid-Solid Bilayer,” Wave Motion,21, pp. 35–46.
Alleyne,  D., Lowe,  M., and Cawley,  P., 1996, “The Inspection of Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Rev. Prog. Quant. Nondestr. Eval., eds., D. O. Thompson and D. E. Chimenti, 15, pp. 1859–1866, Plenum Press, New York, NY.
Pelts,  S. P., and Rose,  J. L., 1996, “Source Influence Parameters on Elastic Guided Waves in an Orthotropic Plate,” J. Acoust. Soc. Am., 99, pp. 2124–2129.
Kwun, H., and Bartels, K. A., 1997, Magnetostrictive Sensor (MsS) Technology and its Application, Ultrasonic Int’l’97 Conference, Delft, Netherlands, June.
Shin,  H. J., and Rose,  J. L., 1998, “Guided Wave Tuning Principles for Defect Detection in Tubing,” J. Nondestruct. Eval., 7, pp. 27–36.
Rose,  J. L., Pelts,  S., and Cho,  Y., 2000, “Modeling for Flaw Sizing Potential With Guided Waves,” J. Nondestruct. Eval., 19, No. 2, pp. 55–66.
Rose, J. L., Quarry, M. J., Bray, A. V., and Corley, C. J., 1997, Guided Waves for Corrosion Detection Potential in Piping Under Insulation, ASNT Fall Conference, Pittsburgh, PA, October 20–24.
Bray, A. V., Corley, C. J., Fischer, R. B., Rose, J. L., and Quarry, M. J., 1998, Development of Guided Wave Ultrasonic Techniques for Detection of Corrosion Under Insulation in Metal; Pipe, ASME 1998 Energy Sources Technology Conference and Exhibition, Houston, TX, February 2–4.
Rose,  J. L., Zhu,  W., and Zaidi,  M., 1998, “Ultrasonic NDT of Titanium Diffusion Bonding with Guided Waves,” Mater. Eval., 56, pp. 535–539.
Rose,  J. L., Pelts,  S., and Quarry,  M., 1998, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, 36, pp. 163–168.
Quarry,  M., and Rose,  J. L., 1999, “Multimode Guided Wave Inspection of Piping Using Comb Transducers,” Mater. Eval., 57, pp. 1089–1090.
Li,  J., and Rose,  J. L., 2001, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48, pp. 761–768.
Li,  J., and Rose,  J., 2001, “Guided Wave Inspection of Containment Structures,” Mater. Eval., 59, pp. 783–787.
Li,  J., and Rose,  J. L., 2001, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” J. Acoust. Soc. Am., 109, pp. 457–464.
Rose, J. L., Soley, L. E., Hay, T., and Agarwala, V. S., 2000, Ultrasonic Guided Waves for Hidden Corrosion Detection in Naval Aircraft, presented at CORROSION NACExpo 2000, Orlando, FL, March 26–31.
Rose,  J. L., 2000, “Guided Wave Nuances for Ultrasonic Nondestructive Evaluation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47, pp. 575–583.
Rose,  J. L., and Soley,  L., 2000, “Ultrasonic Guided Waves for the Detection of Anomalies in Aircraft Components,” Mater. Eval., 50, pp. 1080–1086.
Rose, J. L., and Avioli, M. J., 2000, Elastic Wave Analysis for Broken Rail Detection, 15th World Conference on Non-Destructive Testing, Rome, Italy, October 15–21.
Rose,  J. L., and Zhao,  X., 2001, “Flexural Mode Tuning for Pipe Elbow Inspection,” Mater. Eval., 59, pp. 621–624.
Rose,  J. L., and Zhao,  X., 2001, “Anomaly Throughwall Depth Measurement Potential With Shear Horizontal Guided Waves,” Mater. Eval., 59, pp. 1234–1238.
Rose,  J. L., 2002, “Standing on the Shoulders of Giants-An Example of Guided Wave Inspection,” Mater. Eval., 60, pp. 53–59.
Abo-Zena,  A., 1979, “Dispersion Function Computations for Unlimited Frequency Values,” Geophys. J. R. Astron. Soc., 58, pp. 91–105.
Adler,  E. L., 1990, “Matrix Methods Applied to Acoustic Waves in Multilayers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 37, pp. 485–490.
Alleyne,  D. N., Pavlakovic,  B., Lowe,  M. J. S., and Cawley,  P., 2001, “Rapid Long-Range Inspection of Chemical Plant Pipework Using Guided Waves,” Insight, 43, pp. 93–96.
Alleyne,  D. N., Lowe,  M. J. S., and Cawley,  P., 1998, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” ASME J. Appl. Mech., 65, pp. 635–641.
Alleyne,  D. N., and Cawley,  P., 1997, “Long Range Propagation of Lamb Wave in Chemical Plant Pipework,” Mater. Eval., 45, pp. 504–508.
Alleyne,  D. N., and Cawley,  P., 1996, “The Excitation of Lamb Waves in Pipes Using Dry-Coupled Piezoelectric Transducers,” J. Nondestruct. Eval., 15, pp. 11–20.
Alleyne,  D. N., and Cawley,  P., 1992, “The Interaction of Lamb Waves With Defects,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, pp. 381–396.
Alleyne,  D., and Cawley,  P., 1991, “A Two-Dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” J. Acoust. Soc. Am., 89, pp. 1159–1168.
Al-Nassar,  Y. N., Datta,  S. K., and Shah,  A. H., 1991, “Scattering of Lamb Waves by a Normal Rectangular Strip Weldment,” Ultrasonics, 29, pp. 125–132.
Armenekas, A. E., Gazis, D. C., and Herrmann, G., 1969, Free Vibrations of Circular Cylindrical Shells, Pergamon Press, New York.
Auld,  B. A., and Kino,  G. S., 1971, “Normal Mode Theory for Acoustic Waves and Their Application to the Interdigital Transducer,” IEEE Trans. Educ., ED-18, pp. 898–908.
Balasubramaniam,  K., and Ji,  Y., 2000, “Influence of Skewing on the Acoustic Wave Energy Vector Behavior in Anisotropic Material Systems,” J. Sound Vib., 236, pp. 166–175.
Balasubramaniam,  K., and Ji,  Y., 1995, “Guided Wave Analysis in Inhomogeneous Plates,” Rev. Prog. Quant. Nondestr. Eval., eds. D. O. Thompson and D. E. Chimenti, 14, pp. 227–234 Plenum Press, New York, NY.
Balasubramaniam, K. and Ji, Y., 1994, “Analysis of Acoustic Energy Transmission Through Anisotropic Wave Guides Using a Plane Wave Multi-Layer Model,” Materials For Noise and Vibration Control, eds., P. K. Raju and R. Gibson, ASME NCA-Vol-18, ASME DE-Vol-80, ISBN ASME 0-7918-1459-8, pp. 157–163.
Balasubramaniam,  K., 1999, “Inversion of Ply Lay-up Sequence for Multi-Layered Fiber Reinforced Composite Plates Using Genetic Algorithm,” Nondestruct. Test. Eval., 15, pp. 311–331.
Barshinger, J. N., and Rose, J. L., 2001, “Ultrasonic Guided Wave Propagation in Pipes With Viscoelastic Coatings,” QNDE, Brunswick, ME, July 29–August 3.
Brekhovskikh,  L. M., 1968, “Surface Waves Confined to the Curvature of the Boundary in Solid,” Sov. Phys. Acoust., 13, pp. 462–472.
Cerv,  J., 1988, “Dispersion of Elastic Waves and Rayleigh-Type Waves in a Thin Disc,” Acta Tech. CSAV, 89, pp. 89–99.
Chang,  Z., and Mal,  A., 1998, “Wave Propagation in a Plate With Defects,” Rev. Prog. Quant. Nondestr. Eval., 17, pp. 121–128.
Chimenti,  D. E., 1997, “Guided Waves in Plates and Their Use in Materials Characterization,” Appl. Mech. Rev., 50, pp. 247–284.
Chimenti,  D. E., and Rokhlin,  S. I., 1990, “Relationship Between Leaky Lamb Modes and Reflection Coefficient Zeroes for a Fluid-Coupled Elastic Layer,” J. Acoust. Soc. Am., 88, pp. 1603–1611.
Chimenti,  D. E., and Nayfeh,  A. K., 1989, “Ultrasonic Leaky Waves in a Solid Plate Separating a Fluid and Vacuum,” J. Acoust. Soc. Am., 85, pp. 555–560.
Chimenti,  D. E., Nayfeh,  A. H., and Butler,  D. L., 1982, “Leaky Waves on a Layered Half-Space,” J. Appl. Phys., 53, pp. 170–176.
Cho,  Y., Hongerholt,  D. D., and Rose,  J. L., 1997, “Lamb Wave Scattering Analysis for Reflector Characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44, pp. 44–52.
Cho,  Y., and Rose,  J. L., 1996, “A Boundary Element Solution for a Mode Conversion Study on the Edge Reflection of Lamb Waves,” J. Acoust. Soc. Am., 99, pp. 2097–2109.
Cho,  Y., and Rose,  J. L., 1996, “Guided Waves in a Water Loaded Hollow Cylinder,” J Nondestructive Testing Evaluation, 12, pp. 323–339.
Chree,  C., 1886, “Longitudinal Vibrations of a Circular Bar,” Quarterly J. Math., 21, pp. 287–298.
Cooper,  R. M., and Naghdi,  P. M., 1957, “Propagation of Nonaxially Symmetric Waves in Elastic Cylindrical Shells,” J. Acoust. Soc. Am., 29, pp. 1365–1373.
Costley,  R. D., Ingram,  M., Simpson,  J., Shah,  V. V., and Balasubramaniam,  K., 1998, “Torsional Waveguide Sensor for Molten Materials,” Rev. Prog. Quant. Nondestr. Eval., eds. D. O. Thompson and D. Chementi, 17, pp. 859–860.
Datta,  S. K., Al-Nassar,  Y., and Shah,  A. K., 1991, “Lamb Wave Scattering by a Surface Breaking Crack in a Plate,” Rev. Prog. Quant. Nondestr. Eval., eds. D. O. Thompson and D. Chementi, 10, pp. 97–104.
Degertekin, F. L., Honein, B. V., Khuri-Yakub, B. T., and Ginzton, E. L., 1996, Application of Surface Impedance Approach to Ultrasonic Wave Propagation in Layered Anisotropic Media, 1996 IEEE Ultrasonics Symposium, pp. 559–562.
Deputat,  J., 1990, “Application of the Acoustoelastic Effect in Measurements of Residual Stresses,” Arch. Acoust., 15, pp. 69–92.
Ditri,  J. J., 1994, “Utilization of Guided Waves for the Characterization of Circumferential Cracks in Hollow Cylinders,” J. Acoust. Soc. Am., 96, pp. 3769–3775.
Ditri,  J., Rose,  J., and Pilarski,  A., 1992, “Generation of Guided Waves in Hollow Cylinders by Wedge and Comb Type Transducers,” Rev. Prog. Quant. Nondestr. Eval., eds. D. O. Thompson and D. Chementi, 12A, pp. 211–218.
Ditri, J., Rose, J. L., and Chen, G., 1991, Mode Selection Guidelines for Defect Detection Optimization Using Lamb Waves, Proc. 18th Annual Review of Progress in Quantitative NDE Meeting, Plenum, Vol. 11, pp. 2109–2115, Brunswick, ME.
Ewing, W., Jardetsky, W., and Press, F., 1957, Elastic Waves in Layered Media, McGraw Hill, New York.
Farnell, G. W., 1970, Properties of Elastic Surface Waves, Physical Acoustics, Mason, W. P. and Thurston, R. N., eds, Academic Press, New York, Vol. 6, pp. 109–166.
Fei, D., and Chimenti, D. E., 2001, Single-Scan Elastic Property Estimation in Plates, Acoustic Research Letters Online, 2 , pp. 49–55.
Firestone,  F. A., 1948, “Tricks With the Supersonic Reflectoscope,” Nondestr. Test. (Chicago), 7, No. 2, Fall.
Fitch,  A. H., 1963, “Observation of Elastic Pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” J. Acoust. Soc. Am., 35, pp. 706–707.
Fortunko,  C. M., King,  R. B., and Tan,  M., 1982, “Nondestructive Evaluation of Planar Defects in Plates Using Low-Frequency Shear Horizontal Waves,” J. Appl. Phys., 53, pp. 3450–3458.
Frost, H. M., 1978, Electromagnetic-Ultrasound Transducers: Principles, Practice and Applications, Physical Acoustics, New York: Academic Press, edited by W. P. Mason and R. N. Thurston, Vol. XIV, pp. 179–275.
Gazis,  D. C., 1959, “Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders, I. Analytical Foundation,” J. Acoust. Soc. Am., 31, pp. 568–573.
Gazis,  D. C., 1959, “Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders, II. Numerical Results,” J. Acoust. Soc. Am., 31, pp. 573–578.
Ghosh,  J., 1923–24, “Longitudinal Vibrations of a Hollow Cylinder,” Bull. Calcutta Math. Soc., 14, pp. 31–40.
Ghosh,  T., Kundu,  T., and Karpur,  P., 1998, “Efficient Use of Lamb Modes for Detecting Defects in Large Plates,” Ultrasonics, 36, pp. 791–801.
Grace,  O. D., and Goodman,  R. R., 1966, “Circumferential Waves on Solid Cylinders,” J. Acoust. Soc. Am., 39, pp. 173–174.
Greenspon,  J. E., 1961, “Vibrations of Thick and Thin Cylindrical Shells Surrounded by Water,” J. Acoust. Soc. Am., 33, pp. 1321–1328.
Greenspon,  J. E., 1959, “Vibrations of Thick Cylindrical Shells,” J. Acoust. Soc. Am., 31, pp. 1682–1683.
Grewal,  D. S., 1996, “Improved Ultrasonic Testing of Railroad Rail for Transverse Discontinuities in the Rail Head Using Higher Order Rayleigh (M21) Waves,” Mater. Eval., 54, pp. 983–986.
Guo,  D., and Kundu,  T., 2000, “A New Sensor for Pipe Inspection by Lamb Waves,” Mater. Eval., 58, No. 8, pp. 991–994.
Haskell,  N. A., 1953, “The Dispersion of Surface Waves on Multilayered Media,” Bull. Seismol. Soc. Am., eds., G. D. Lauderback, H. Benioff, J. B. Macelwane, University of California Press, Berkeley, CA, 43, pp. 17–34.
Hay, T., 2001, Remote Detection of Fatigue Cracking in SH-60 Seahawk Helicopter Transmission Beams Using Ultrasonic Guided Waves, 2001 ASNT Fall Conference, Columbus, OH Oct.
Herrmann,  G., and Mirsky,  I., 1956, “Three-Dimensional and Shell-Theory Analysis of Axially Symmetric Motions of Cylinders,” J. Appl. Mech., 78, pp. 563–568.
Hongerholt, D. D., Willms, G., and Rose, J. L., 2001, Summary of Results From an Ultrasonic in-Flight Wing Ice Detection System, presented at QNDE Conference, Brunswick, ME, July 29–August 3.
Hosten,  B., 1991, “Bulk Heterogeneous Plane Waves Propagation Through Viscoelastic Plates and Stratified Media With Large Values of Frequency Domain,” Ultrasonics, 29, pp. 445–450.
Jung,  Y. C., Kundu,  T., and Ebsani,  M., 2001, “Internal Discontinuity Detection in Concrete by Lamb Waves,” Mater. Eval., 59, pp. 418–423.
Karim,  M. R., Mal,  A. K., and Bar-Cohen,  Y., 1990, “Inversion of Leaky Lamb Wave Data by Simplex Algorithm,” J. Acoust. Soc. Am., 88, pp. 482–491.
Kielczynski, P., and Cheeke, J. D. N., 1997, Love Waves Propagation in Viscoelastic Media, IEEE Ultrasonics Symposium, pp. 437–440.
Kley,  M., Valle,  C., Jacobs,  L. J., Qu,  J., and Jarzynski,  J., 1999, “Development of Dispersion Curves for Two Layered Cylinders Using Laser Ultrasonics,” J. Acoust. Soc. Am., 106, pp. 582–588.
Knopoff,  L., 1964, “A Matrix Method for Elastic Wave Problems,” Bull. Seismol. Soc. Am., 54, pp. 431–438.
Kolsky, 1963, Stress Waves in Solids, Dover Publications, Inc., New York.
Koshiba,  M., Karakida,  S., and Suzuki,  M., 1984, “Finite Element Analysis of Lamb Waves Scattering in an Elastic Plate Waveguide,” IEEE Trans. Sonics Ultrason., SU-31, pp. 18–25.
Krautkramer, J., and Krautkramer, H., 1990, Ultrasonic Testing of Materials, Springer Verlag, New York, 4th edition.
Kromine,  A. K., Fomitchov,  P. A., Krishnaswamy,  S., and Achenbach,  J. D., 2000, “Laser Ultrasonic Detection of Surface Breaking Discontinuities: Scanning Laser Source Technique,” Mater. Eval., 58, pp. 173–177, February.
Kundu,  T., Potel,  C., and deBelleval,  J. F., 2001, “Importance of the Near Lamb Mode Imaging of Multilayered Composite Plates,” Ultrasonics, 39, pp. 283–290.
Kundu,  T., Maji,  A., Ghosh,  T., and Maslov,  K., 1998, “Detection of Kissing Bonds by Lamb Waves,” Ultrasonics, 35, pp. 573–580.
Kundu,  T., Maslov,  K., Karpur,  P., Matikas,  T. E., and Nicolaou,  P. D., 1996, “A Lamb Wave Scanning Approach for Mapping of Defects in [0/90] Titanium Matrix Composites,” Ultrasonics, 34, pp. 43–49.
Kwun,  H., and Dynes,  H., 1998, “Long Range Guided Wave Inspection of Pipe Using the Magnetostrictive Sensor Technology-Feasibility of Defect Characterization,” International Society for Optical Engineering (SPIE) on Nondestructive Evaluation of Utilities and Pipelines II, 3398, pp. 28–34.
Kwun,  H., and Bartels,  K. A., 1996, “Experimental Observation of Elastic-Wave Dispersion in Bounded Solids of Various Configurations,” J. Acoust. Soc. Am., 99, pp. 962–968.
Kwun,  H., and Teller,  C. M., 1994, “Detection of Fractured Wires in Steel Cables Using Magnetostrictive Sensors,” Mater. Eval., 52, pp. 503–507.
Lamb,  H., 1912, “On Waves in an Elastic Plate,” Proc. R. Soc. London, Ser. A, 93, pp. 114–128.
Lange,  J. N., 1967, “Mode Conversion in the Long-Wavelength Limit,” J. Acoust. Soc. Am., 41, pp. 1449–1452.
Lehfeldt, W., 1962, Testing of Sheet Material, Tubes, and Bars With Ultrasonic Surface and Plate Waves, Proc. International Symposium on the Application of Ultrasonics [Russian Translation], Bratislava, Czechoslovakia, September.
Levesque,  D., and Piche,  L., 1992, “A Robust Transfer Matrix Formulation for the Ultrasonic Response of Multilayered Absorbing Media,” J. Acoust. Soc. Am., 92, pp. 452–467.
Li,  H. U., and Negishi,  K., 1994, “Visualization of Lamb Mode Patterns in a Glass Plate,” Ultrasonics, 32, No. 4, p. 243.
Li,  J., and Rose,  J. L., 2001a, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” J. Acoust. Soc. Am., 109, pp. 457–464.
Li,  Y., and Thompson,  R. B., 1990, “Influence of Anisotropy on the Dispersion Characteristics of Guided Ultrasonic Plate Modes,” J. Acoust. Soc. Am., 87, pp. 1911–1931.
Lih,  S. S., and Mall,  A. K., 1995, “On the Accuracy of Approximate Plate Theories for Wave Field Calculations in Composite Laminates,” Wave Motion, 21, pp. 17–34.
Littles,  J. W., Jacobs,  L. J., and Zurwich,  A. K., 1997, “The Ultrasonic Measurement of Elastic Constants of Structural FRP Composites,” Rev. Prog. Quant. Nondestr. Eval., (eds. D. O. Thompson and D. E. Chimenti). Plenum Press, Vol.16, pp. 1807–1814.
Liu,  G., and Qu,  J., 1998, “Guided Circumferential Waves in a Circular Annulus,” J. Appl. Mech., 65, pp. 424–430.
Liu,  G., and Qu,  J., 1998, “Transient Wave Propagation in a Circular Annulus Subjected to Impulse Excitation on its Outer Surface,” J. Acoust. Soc. Am., 103, pp. 1210–1220.
Lowe,  M. J. S., Alleyne,  D. N., and Cawley,  P., 1998, “The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe,” ASME J. Appl. Mech., 65, pp. 649–656.
Lowe,  M. J. S., 1995, “Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 42, pp. 525–542.
Mal,  A. K., and Lih,  S. S., 1992, “Elastodynamic Response of a Unidirectional Composite Laminate to Concentrated Surface Loads: Part I,” J. Appl. Mech., 59, pp. 878–886.
Mal,  A. K., Yin,  C. C., and Bar-Cohen,  Y., 1991, “Analysis of Acoustic Pulses Reflected From the Fiber-Reinforced Composite Laminates,” ASME J. Appl. Mech., 59, pp. 5136–5144.
Malyarenko,  E. V., and Hinders,  M. K., 2001, “Ultrasonic Lamb Wave Diffraction Tomography,” Ultrasonics, 39, pp. 269–281.
Maslov,  K. I., and Kundu,  T., 1997, “Selection of Lamb Modes for Detecting Internal Defects in Laminated Composites,” Ultrasonics, 35, pp. 141–150.
Matveev,  A. S., and Krakovyak,  M. F., 1960, “An Ultrasonic Free-Wave Flaw-Detection Method for Inspection of Thin-Walled Tubes,” Zavod. Lab, 11, pp. 1235–1238.
McFadden,  J. A., 1954, J. Acoust. Soc. Am., 26, pp. 714–715.
Meeker,  T. R., and Meitzler,  A. H., 1964, “Guided Wave Propagation in Elongated Cylinders and Plates,” Phys. Acoust., 1A, pp. 111–167.
Mindlin, R. D., 1958, “Waves and Vibrations in Isotropic, Elastic Plates,” Structural Mechanics, Proc Symposium on Naval Structural Mechanics, pp. 199–232.
Mirsky,  I., and Herrmann,  G., 1958, “Axially Symmetric Motions of Thick Cylindrical Shells,” J. Appl. Mech., 80, pp. 97–102.
Mohr,  W., and Holler,  P., 1976, “On Inspection of Thin-Walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Trans. Sonics Ultrason., SU-23, pp. 369–374.
Monkhouse,  R. S. C., Wilcox,  P. D., and Cawley,  P., 1997, “Flexible Interdigital PVDF Transducers for the Generation of Lamb Waves in Structures,” Ultrasonics, 35, pp. 489–498.
Moser,  F., Jacobs,  L. J., and Qu,  J., 1999, “Application of Finite Element Methods to Study Wave Propagation in Wave Guides,” NDT & E Int., 32, pp. 225–234.
Mudge,  P. J., 2001, “Field Application of the Teletest Long-Range Ultrasonic Testing Technique,” Insight, 43, pp. 74–77.
Nagy,  P. B., and Kent,  R. M., 1995, “Ultrasonic Assessment of Poisson’s Ratio in Thin Rods,” J. Acoust. Soc. Am., 98, pp. 2694–2701.
Nagy,  P. B., Blodgett,  M., and Gulis,  M., 1994, “Weep Hole Inspection by Circumferential Creeping Waves,” NDT & E Int., 27, pp. 131–142.
Nayfeh, A. H., Taylor, T. W., and Chimenti, D. E., 1988, “Theoretical Wave Propagation in Multilayered Orthotropic Media,” Wave Propagation in Structural Composites, ASME AMD-Vol. 90, pp. 17–27.
Ngoc,  T. D. K., and Mayer,  W. G., 1988, “A General Description of Ultrasonic Nonspecular Reflection and Transmission Effects for Layered Media,” IEEE Trans. Sonics Ultrason., SU-27, pp. 229–236.
Ngoc,  T. D. K., and Mayer,  W. G., 1980, “A General Description of Ultrasonic Nonspecular Reflection and Transmission Effects for Layered Media,” IEEE Trans. Sonics Ultrason., SU-27, p. 229.
Niethammer,  M., Jacobs,  L. J., Qu,  J., and Jarzynski,  J., 2001, “Time-Frequency Representation of Lamb Waves,” J. Acoust. Soc. Am., 109, pp. 1841–1847.
Niethammer,  M., Jacobs,  L., Qu,  J., and Jarzynski,  J., 2000, “Time-Frequency Representation of Lamb Waves Using the Reassigned Spectrogram,” J. Acoust. Soc. Am., 107, pp. L19–L24.
Nikiforov, L. A., and Kharitonov, A. V., 1981, Parameters of Longitudinal Subsurface Waves Excited by Angle-Beam Transducers, Defektoskopiya, Vol. 6, pp. 80–85.
Ogden,  R. W., and Sotiropoulos,  D. A., 1995, “Interfacial Waves in Pre-Stressed Layered Incompressible Elastic Solids,” Proc. R. Soc. London, Ser. A, 450, pp. 319–341.
Oppenheim,  A. V., Weinstein,  E., Zangi,  K., Feder,  M., and Gauger,  D., 1994, “Single-Sensor Active Noise Cancellation,” IEEE Trans. Speech Audio Process., 2, No. 4, April.
Pao,  Y. H., and Mindlin,  R. D., 1960, “Dispersion of Flexural Waves in an Elastic Circular Cylinder,” J. Appl. Meteorol., 27, pp. 513–520.
Pavlakovic,  B. N., Lowe,  M. J. S., and Cawley,  P., 2001, “High Frequency Low Loss Ultrasonic Modes in Imbedded Bars,” ASME J. Appl. Mech., 68, pp. 67–75.
Pochhammer,  L., 1876, Journal fur Mathematics, (Crelle), 81, pp. 324–336.
Press,  F., Harkrider,  D., and Seafeldt,  C. A., 1961, “A Fast, Convenient Program for Computation of Surface-Wave Dispersion Curves in Multilayered Media,” Bull. Seismol. Soc. Am., 51, pp. 495–502.
Qu,  J., Berthelot,  Y., and Jacobs,  L., 2000, “Crack Detection in Thick Annular Components Using Ultrasonic Guided Waves,” Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci., 214, pp. 1163–1171.
Rajana,  K. M., Cho,  Y., and Rose,  J. L., 1996, “Utility of Lamb Waves for Near Surface Crack Detection,” Rev. Prog. Quant. Nondestr. Eval., eds. D. O. Thompson and D. Chimenti, 15, pp. 247–252.
Randall,  C. J., and Stanke,  F. E., 1988, “Mathematical Model for Internal Ultrasonic Inspection of Cylindrically Layered Structures,” J. Acoust. Soc. Am., 83, pp. 1295–1305.
Rayleigh, J. W. S., 1945, The Theory of Sound, Dover Publications Inc., New York.
Rayleigh,  Lord, 1885, “On Waves Propagated Along the Plane Surface of an Elastic Solid,” Proc. London Math. Soc., 17, pp. 4–11.
Redwood, M., 1960, Mechanical Waveguides, Pergamon Press, New York.
Ristic, V. M., 1983, Principles of Acoustic Devices, John Wiley & Sons, Inc., Ch. 3, pp. 52–90.
Rokhlin,  S. I., 1991, “Lamb Wave Interaction with Lap-Shear Adhesive Joints: Theory and Experiment,” J. Acoust. Soc. Am., 89, pp. 2758–2765.
Rokhlin,  S., 1979, “Interaction of Lamb Waves With Elongated Delaminations in Thin Sheets,” Int. Adv. Nondestr. Test., 6, pp. 263–285.
Rose, J. L., Avioli, M. J., and Cho, Y., 2001, “Elastic Wave Analysis for Broken Rail Detection,” QNDE, Brunswick, ME, July 29–August 3.
Rose,  J. L., and Zhao,  X., 2001c, “Flexural Mode Tuning for Pipe Elbow Inspection,” Mater. Eval., 59, pp. 621–624.
Rose,  J. L., Jiao,  D., and Spanner,  J., 1996, “Ultrasonic Guided Wave NDE for Piping, Materials Evaluation,” Mater. Eval., 54, pp. 1310–1313.
Rose,  J. L., Rajana,  K. M., and Hansch,  M. K. T., 1995, “Ultrasonic Guided Waves for NDE of Adhesively Bonded Structures,” J. Adhes., 50, pp. 71–82.
Rose,  J. L., Rajana,  K., and Carr,  F., 1994, “Ultrasonic Guided Wave Inspection Concepts for Steam Generator Tubing,” Mater. Eval., 52, pp. 307–311.
Rose,  J. L., Nayfeh,  A., and Pilarski,  A., 1989, “Surface Waves for Material Characterization,” J. Appl. Mech., 57, pp. 7–11.
Scholte, 1942, “On the Stoneley Wave Equation,” Proc., of the Koninklijke Nederlandse Akademie van Wetenschappen, Vol. 45, pp. 20–25, pp. 159–164.
Schwab,  F., 1970, “Surface-Wave Dispersion Computations: Knopoff’s Method,” Bull. Seismol. Soc. Am., 60, pp. 1491–1520.
Sezawa, K., 1927, “Dispersion of Elastic Waves Propagated on Surface of Stratified Bodies and Curved Surfaces,” Bulletin of the Earthquake Research Institute, University of Tokyo, Vol. 3, pp. 1–8.
Shah,  A. H., and Datta,  S. K., 1982, “Harmonic Waves in a Periodically Laminated Medium,” Int. J. Solids Struct., 18, p. 397.
Shin, H. J., and Rose, J. L., 1998, “Non-Axisymmetric Ultrasonic Guided Waves in Pipes,” 7th Annual Research Symposium, 1998 ASNT Spring Conference, Anaheim, CA, March 23–27.
Silk,  M. G., and Bainton,  K. P., 1979, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, 17, pp. 11–19.
Simmons,  J. A., Dreswcher-Krasicka,  E., and Wadley,  H. N. G., 1992, “Leaky Axisymmetric Modes in Infinite Clad Rods,” J. Acoust. Soc. Am., 92, pp. 1061–1090.
Solie,  L. P., and Auld,  B. A., 1973, “Elastic Waves in Free Anisotropic Plates,” J. Acoust. Soc. Am., 54, p. 1.
Song, W. J., Rose, J. L., and Whitesel, H., 2001, “Detection of Damage in a Ship Hull Using Ultrasonic Guided Waves,” QNDE, Brunswick, ME, July 29–August 3.
Stewart,  J. T., and Yong,  Y., 1994, “Exact Analysis of the Propagation of Acoustic Waves in Multilayered Anisotropic Piezoelectric Plates,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 41, pp. 375–390.
Stoneley,  R., 1924, “Elastic Waves at the Surface of Separation of Two Solids,” Proc. R. Soc. London, 106, pp. 416–428.
Sullivan,  R., Balasubramaniam,  K., and Bennett,  A. G., 1996, “Plate Wave Flow Patterns for Ply Orientation Imaging in Fiber Reinforced Composites,” Mater. Eval., 54, pp. 518–523.
Sullivan,  R., Balasubramaniam,  K., Bennett,  A. G., and Issa,  C. A., 1994, “Experimental Imaging of Fiber Orientation in Multi-Layered Graphite Epoxy Composite Structures,” Rev. Prog. Quant. Nondestr. Eval., , 13, pp. 1313–1320.
Talbot,  R. J., and Przemieniecki,  J. S., 1975, “Finite Element Analysis of Frequency Spectra for Elastic Waveguides,” Int. J. Solids Struct., 11, pp. 115–138.
Thompson,  R. B., 1997, “Experiences in the Use of Guided Ultrasonic Waves to Scan Structures,” Rev. Prog. Quant. Nondestr. Eval., 16A, pp. 121–128.
Thompson,  R. B., 1990, “Physical Principles of Measurements With EMAT Transducers,” Phys. Acoust., 19, pp. 157–199, Academic Press, NY.
Thompson,  R. B., 1978, “A Model for the Electromagnetic Generation of Ultrasonic Guided Waves in Ferromagnetic Polycrystals,” IEEE Trans. Circuits Syst., SU-25, pp. 7–15.
Thompson,  R. B., 1977, “Mechanisms of Electromagnetic Generation and Detections of Ultrasonics Lamb Waves in Iron-Nickel Polycrystals,” J. Appl. Phys., 48, pp. 4942–4950.
Thompson,  R. B., 1973, “A Model for the Electromagnetic Generation of Rayleigh and Lamb Waves,” IEEE Trans. Sonics Ultrason., SU-20, pp. 340–346.
Thompson, R. B., Alers, G. A., and Tennison, M. A., 1972, “Applications of Direct Electromagnetic Lamb Wave Generation to Gas Pipeline Inspection,” Proc., IEEE Ultrasonics Symposium, pp. 91–94.
Thomson,  W. T., 1950, “Transmission of Elastic Waves Through a Stratified Solid Medium,” J. Appl. Phys., 21, pp. 89–93.
Tittmann, B. R., 1991, Acoustic Microscopy for the Characterization of High Temperature Composites Carbon-Carbon Proc., Joint Japan-USA Meeting on Composites: ICCW 8, 22, D-2 to -10.
Tittmann,  B. R., 1971, “A New Technique for Precision Measurements of Elastic Surface Wave Properties on Arbitrary Materials,” Rev. Sci. Instrum., 42, pp. 1136.
Tokuoka,  T., and Iwashimizu,  Y., 1968, “Acoustical Birefringence of Ultrasonic Waves in Deformed Isotropic Elastic Media,” Int. J. Solids Struct. 4, pp. 383–389.
Towik,  P. V., 1967, “Reflections of Wave Trains in Semi-Infinite Plates,” JASA, 41, pp. 346–353.
Valle,  C., Niethammer,  M., Qu,  J., and Jacobs,  L. J., 2001, “Crack Characterization Using Guided Circumferential Waves,” J. Acoust. Soc. Am., 109, pp. 1841–1847.
Valle,  C., Qu,  J., and Jacobs,  L. J., 1999, “Guided Circumferential Waves in Layered Cylinders,” Int. J. Eng. Sci., 37, pp. 1369–1387.
Veroy,  K. L., Wooh,  S. C., and Shi,  Y., 1999, “Analysis of Dispersive Waves Using the Wavelet Transform,” Rev. Prog. Quant. Nondestr. Eval., eds., D. O. Thompson and D. E. Chimenti, 18, Plenum Press, New York, NY, pp. 687–694.
Viktorov,  I. A., 1958, “Rayleigh-Type Waves on a Cylindrical Surface,” Sov. Phys. Acoust., 4, pp. 131–136.
Watson,  T. H., 1972, “A Real Frequency, Complex Wave-Number Analysis of Leaking Modes,” Bull. Seismol. Soc. Am., 62, pp. 369–384.
Wenzel,  S. W., and White,  R. M., 1998, “A Multisensor Employing an Ultrasonic Lamb Wave Oscillator,” IEEE Trans. Electron Devices, 35, pp. 735–743.
Wooh,  S. C., and Shi,  Y., 2001, “Synthetic Phase Tuning of Guided Waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48, January.
Wooh,  S. C., and Shi,  Y., 2000, “Dynamic Tuning of Lamb Waves Using an Array Transducer,” Rev. Prog. Quant. Nondestr. Eval., eds., D. O. Thompson and D. E. Chimenti, 19, p. 1071, Plenum Press, New York, NY.
Worlton,  D. C., 1957, “Ultrasonic Testing With Lamb Waves,” Nondestr. Test. (Chicago), 15, pp. 218–222.
Worlton,  D. C., 1961, “Experimental Confirmation of Lamb Waves at Megacycle Frequencies,” J. Appl. Phys., 32, pp. 967–971.
Yang,  W., and Kundu,  T., 1998, “Guided Waves in Multilayered Anisotropic Plates for Internal Defect Detection,” J. Eng. Mech. Div., 124, pp. 311–318.
Zangi, K. C., 1994, Optimal Feedback Control Formulation of the Active Noise Cancellation Problem: Pointwise and Distributed, MIT Research Laboratory of Electronics No. 583. May.
Zemanek,  J., 1972, “An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder,” J. Acoust. Soc. Am., 51, pp. 265–283.
Zhang,  S. Y., Shen,  J. Z., and Ying,  C. F., 1988, “The Reflection of the Lamb Wave by a Free Plate Edge: Visualization and Theory,” Mater. Eval., 46, pp. 638–641.
Zhu, J., Shah, A. H., and Datta, S. K., 1994, Modeling and Application of Guided Elastic Waves in Plates, Wave Propagation and Emerging Technologies, ASME AMD-Vol. 188, pp. 69–84.
Zhu,  W., and Rose,  J. L., 1999, “Lamb Wave Generation and Reception With Time-Delay Periodic Linear Arrays: A BEM Simulation and Experimental Study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 46, pp. 654–664, May.

Figures

Grahic Jump Location
Techniques for the generation of guided waves—(a) oblique incidence, (b) comb transducer
Grahic Jump Location
Sample phase velocity spectra showing excitation amplitude versus phase velocity (frequency=4.3 MHz,bandwidth=.6 MHz)
Grahic Jump Location
Experimental versus theoretical results for a traction-free aluminum plate (showing source influence)
Grahic Jump Location
Sample power distribution and wave structure results taken for Ux in-plane displacement, and Wz, out-of-plane displacement from specific points on a dispersion curve: (a) f=0.293 MHz,Cp=4.48 km/s; (b) ff=0.664 MHz,Cp=4.85 km/s
Grahic Jump Location
Lamb wave mode activation possibilities—(a) angle beam probe, (b) comb probe, (c), mode excitation zones. (Angle beam shoe-constant phase velocity (horizontal line) determined from Snell’s law for a given angle. Comb transducer excites modes with a constant wavelength (sloped line) determined by the spacing of the elements.)
Grahic Jump Location
Nonaxisymmetric wave circumferential displacement distribution (circum. angle=180 deg,freq.=0.39 MHz, modes: L(0,1)−F(10,1), wall thickness=5/16 in.)
Grahic Jump Location
A lap splice inspection sample problem—(a) ultrasonic through-transmission approach for lap splice joint inspection, (b) double spring “hopping probe” used for the inspection of a lap splice joint
Grahic Jump Location
Reflection (a) and transmission (b) coefficients for n=0 mode under n=0 incident mode for 0.012 in. elliptical defect width (notch) and 10, 20,[[ellipsis]] 80% through-plate thickness depth

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In