0
TECHNICAL PAPERS

Elastic Guided Waves in a Layered Plate With a Rectangular Cross Section

[+] Author and Article Information
O. M. Mukdadi, S. K. Datta, M. L. Dunn

Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427

J. Pressure Vessel Technol 124(3), 319-325 (Jul 26, 2002) (7 pages) doi:10.1115/1.1491582 History: Received May 02, 2002; Online July 26, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nayfeh, A. H., 1995, Wave Propagation in Layered Anisotropic Media with Applications to Composites, Elsevier, Amsterdam, The Netherlands.
Datta, S. K., 2000, “Wave Propagation in Composite Plates and Shells,” Comprehensive Composite Materials, Vol. 1, Chapter 18, T.-W. Chou, ed., Elsevier, Amsterdam, The Netherlands, pp. 511–558.
Rose, J. L., 1999, Ultrasonic Waves in Solid Media, Cambridge Press.
Chimenti,  D. E., 1997, “Guided Waves in Plates and Their Use in Material Characterization,” Appl. Mech. Rev., 50, pp. 247–284.
SeGi,  Y., Kim,  K. W., Stroscio,  M. A., Iafrate,  G. J., and Ballato,  A., 1994, “Electron-Acoustic-Phonon Scattering Rates in Rectangular Quantum Wires,” Phys. Rev. B, 50, pp. 1733–1738.
Datta, S. K., Dunn, M. L., Sesselman, R., and Niklasson, J., 1999, “Mechanical Behavior and Ultrasonic Characterization of Ductile/Brittle Layered Material Systems,” Proc., 17th Symposium on Energy Engineering Sciences, B. Armaly, ed., Argonne National Laboratory, Argonne, IL, pp. 82–89.
Niklasson, A. J., and Datta, S. K., 2000, “On the Modeling of Guided Waves in Plates with Superconducting Layers,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 19, D. O. Thompson and D. E. Chimenti, eds., American Institute of Physics, Melville, NY.
Niklasson,  A. J., Datta,  S. K., and Dunn,  M. L., 2000, “On Approximating Guided Waves in Plates with Thin Anisotropic Coatings by Means of Effective Boundary Conditions,” J. Acoust. Soc. Am., 108, pp. 924–933.
Niklasson,  A. J., Datta,  S. K., and Dunn,  M. L., 2000, “On Ultrasonic Guided Waves in a Thin Anisotropic Layer Lying between Isotropic Layers,” J. Acoust. Soc. Am., 108, pp. 2005–2011.
Hernandez,  C. M., Murray,  T. W., and Krishnaswamy,  S., 2002, “Photoacoustic Characterization of the Mechanical Properties of Thin Films,” Appl. Phys. Lett., 80, pp. 691–693.
Matsuda,  Y., Richardson,  C. J., and Spicer,  J. B., 2001, “Spectral Compression of Ultrafast Acoustic Transients in Thin Films for Enhanced detectability,” Appl. Phys. Lett., 79, pp. 2288–2290.
Merlin,  R., 1997, “Generating Coherent THz Phonons with Light Pulses,” Solid State Commun., 102, pp. 207–220.
Aalami,  B., 1973, “Waves in Prismatic Guides of Arbitrary Cross Section,” ASME J. Appl. Mech., 40, pp. 1067–1072.
Taweel,  H., Dong,  S. B., and Kazic,  M., 2000, “Wave Reflection from the Free End of a Cylinder with Arbitrary Cross-Section,” Int. J. Solids Struct., 37, pp. 1701–1726.
Datta,  S. K., Shah,  A. H., Bratton,  R. L., and Chakraborty,  T., 1988, “Wave Propagation in Laminated Composite Plates,” J. Acoust. Soc. Am., 83, pp. 2020–2026.
Karunasena,  W., Shah,  A. H., and Datta,  S. K., 1991, “Wave Propagation in a Multilayered Cross-ply Composite Plate,” ASME J. Appl. Mech., 58, pp. 1028–1032.
Shull,  P. J., Chimenti,  D. E., and Datta,  S. K., 1994, “Elastic Guided Waves and the Floquet Concept in Periodically Layered Plates,” J. Acoust. Soc. Am., 95, pp. 99–108.
Datta,  S. K., Shah,  A. H., and Karunasena,  W., 1999, “Ultrasonic Waves and Material and Defect Characterization in Composite Plates,” Mechanics of Composite Materials and Structures, 6, pp. 285–300.
Nishiguchi,  N., Ando,  Y., and Wyburne,  M. N., 1997, “Acoustic Phonon Modes of Rectangular Quantum Wires,” J. Phys.: Condens. Matter, 9, pp. 5751–5764.
Visscher,  W. M., Migliori,  A., Bell,  T. M., and Reinert,  R. A., 1991, “On The Normal-Modes of Free-Vibration of Homogenous and Anisotropic Elastic Objects,” J. Acoust. Soc. Am., 90, pp. 2154–2164.
Kynch,  G. J., 1957, “The Fundamental Modes of Vibration of Uniform Beams for Medium Wavelengths,” Br. J. Appl. Phys., 8, pp. 64–73.
Nigro,  N. J., 1966, “Steady-state Wave Propagation in Infinite Bars of Noncircular Cross Section,” J. Acoust. Soc. Am., 40, pp. 1501–1508.
Fraser,  W. B., 1969, “Stress Wave Propagation in Rectangular Bars,” Int. J. Solids Struct., 5, pp. 379–397.
Mukdadi, O. M., Desai, Y. M., Datta, S. K., Shah, A. H., and Niklasson, A. J., 2001, “Elastic Guided Waves in a Layered Plate with Rectangular Cross Section,” submitted to J. Acoust. Soc. Am.
Schwab,  K., Fon,  W., Henriksen,  E., Worlock,  J. M., and Roukes,  M. L., 2000, “Quantized Thermal Conductance: Measurements in Nanostructures,” Physica B, 280, pp. 458–459.
Vogelgesang,  R., and Grimsditch,  M., 2000, “The Elastic Constants of Single Crystal β-Si3N4,” Appl. Phys. Lett., 76, pp. 982–984.
Adachi,  S., 1985, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys., 58, pp. R1–R28.

Figures

Grahic Jump Location
Exact dispersion curves of infinite plate (including SH modes) and approximate dispersion curves of finite-width plate of H/B=1.2 (120 nm×100 nm) GaAs nanowire. Cs=C66GaAs/ρ,F=ωH/2πCs.
Grahic Jump Location
Exact dispersion curves of infinite plate (including SH modes) and approximate dispersion curves of finite-width plate of H/B=1.2 ((100+20) nm×100 nm) GaAs-Nb nanowire
Grahic Jump Location
Exact dispersion curves of infinite plate (including SH modes) and approximate dispersion curves of finite-width plate of H/B=0.5 ((100+20) nm×240 nm) GaAs-Nb nanowire
Grahic Jump Location
Close-up window showing the coupling between bending and longitudinal modes
Grahic Jump Location
Exact dispersion curves of infinite plate (including SH modes) and approximate dispersion curves of finite-width plate of H/B=85/150 (85 nm×150 nm) Si3N4 nanowire. The corresponding mode shape plots shown in Fig. 10 are labeled by (□). Cs=C66Si3N4/ρ,F=ωH/2πCs.
Grahic Jump Location
Exact dispersion curves of infinite plate (including SH modes) and approximate dispersion curves of finite-width plate of H/B=85/150 ((60+25) nm×150 nm) Si3N4-Nb nanowire. The corresponding mode shape plots shown in Fig. 11 are labeled by (□).
Grahic Jump Location
Exact dispersion curves of infinite plate (including SH modes) and approximate dispersion curves of finite-width plate of H/B=0.25 ((60+25) nm×340 nm) Si3N4-Nb nanowire
Grahic Jump Location
Close-up window showing the coupling between L0 mode and BX1 mode of finite-width plate of H/B=0.25Si3N4-Nb nanowire. The corresponding mode shape plots shown in Fig. 9 are labeled by (□).
Grahic Jump Location
Mode shapes for the ((60+25) nm×340 nm) Si3N4-Nb nanowire, showing the coupling of the L0 and BX1 modes. K=kH.
Grahic Jump Location
Mode shapes for the (85 nm×150 nm) Si3N4 nanowire
Grahic Jump Location
Mode shapes for the ((60+25) nm×150 nm) Si3N4-Nb nanowire

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In