0
RESEARCH PAPER

Mechanisms and Modeling Comparing HB7 and A723 High Strength Pressure Vessel Steels

[+] Author and Article Information
E. Troiano, J. H. Underwood

US Army RDT&E Center Watervliet, NY 12189-4050

A. P. Parker

Cranfield University, Swindon, SN6 8LA UK

J. Pressure Vessel Technol 126(4), 473-477 (Dec 01, 2004) (5 pages) doi:10.1115/1.1811108 History: Received August 04, 2004; Revised August 11, 2004; Online December 01, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Troiano, A. R., 1960, Trans ASM, 52 , p. 54.
Carter, C. S., 1971, Corrosion, 27 (11).
Gangloff, R. P., 2001, “Diffusion of Hydrogen Environment Embrittlement in High Strength Alloys,” N. R. Moody and A. W. Thompson, eds., The Minerals, Metals and Materials Society, Warrendale, PA.
Vigilante, G. N., Underwood, J. H., Crayon, D., Tauscher, S., Sage, T., and Troiano, E., 1997, “Hydrogen-Induced Cracking Test of High-Strength Steels and Nickel-Iron Base Alloys Using the Bolt-Loaded Specimen,” ASTM STP 1321, pp. 602–616.
Wei,  R. P., and Novak,  S. R., 1987, “Interlaboratory Evaluation of KISCC and da/dt Determination Procedures for High Strength Steels,” J. Test. Eval., 15(1) pp. 38–75.
Vigilante, G. N., Underwood, J. H., and Crayon, D., 1999, “Use of the Instrumented Bolt and Constant Displacement Bolt-Loaded Specimen to Measure In-Situ Hydrogen Crack Growth in High Strength Steels,” ASTM STP 1360.
ASTM E1681, 2003, Determining Threshold Stress Intensity Factors for Environment-Assisted Cracking of Metallic Materials, Vol. 3.01, ASTM.
Gerberich, W. W., 1974, “Effect of Hydrogen on High-Strength and Martensitic Steels,” Hydrogen in Metals, I. M. Bernstein and Anthony W. Thompson, eds., American Society of Metals, pp. 115–147.
Spencer, G. L., 1987, “Hydrogen Embrittlement of Gun Steel,” ARDEC Technical Report ARCCB-TR-87030.
Bauschinger, J., 1881, “Ueber die Veranderung der Elasticitatagrenze und dea Elasticitatamoduls verschiadener Metalle,” Zivilingenieur, 27 , columns 289–348.
Troiano, E., Parker, A. P., Underwood, J. H., and Mossey, C., “Experimental Data, Numerical Fit and Fatigue Life Calculations Relating to Bauschinger Effect in High Strength Armament Steels,” ASME J. Pressure Vessel Technol., 125, pp. 330–334.
Parker,  A. P., Troiano,  E., Underwood,  J. H., and Mossey,  C., 2003, “Characterization of Steels Using a Revised Kinematic Hardening Model Incorporating Bauschinger Effect,” ASME J. Pressure Vessel Technol., 125, pp. 277–281.
Parker,  A. P., 2001, “Autofrettage of Open End Tubes—Pressures, Stresses, Strains and Code Comparisons,” ASME J. Pressure Vessel Technol., 123, pp. 271–281.

Figures

Grahic Jump Location
Crack Incubation Data—A723 and HB7 Steel
Grahic Jump Location
Crack Propagation—A723 and HB7 Steel
Grahic Jump Location
Bauschinger Test Results—HB7
Grahic Jump Location
Reverse Yielding—A723 and HB7 Steel
Grahic Jump Location
Bore Hoop Stress vs. Autofrettage—A723 and HB7 Steel
Grahic Jump Location
Predicted Life vs. Autofrettage—A723 and HB7 Steel

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In