0
RESEARCH PAPERS

Finite Element Modeling of Fatigue Damage Using a Continuum Damage Mechanics Approach

[+] Author and Article Information
Abı́lio M. P. De Jesus

Engineering Department—Mechanical Engineering, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-911 Vila Real, Portugale-mail: ajesus@utad.pt

Alfredo S. Ribeiro

Engineering Department—Mechanical Engineering, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-911 Vila Real, Portugale-mail: aribeiro@utad.pt

António A. Fernandes

Rua Dr. Roberto Frias, 4200-Porto, Portugal University of Porto—Faculty of Engineeringe-mail: aaf@fe.up.pt

J. Pressure Vessel Technol 127(2), 157-164 (May 27, 2005) (8 pages) doi:10.1115/1.1858927 History: Received October 18, 2004; Revised November 24, 2004; Online May 27, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Suresh, S., 1998, Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge.
Stephens, R. I., Fatemi, A., Stephens, R. R., and Fuchs, O. H., 2001, Metal Fatigue in Engineering, Wiley, New York.
Kachanov,  L. M., 1958, “Time of the Rupture Process Under Creep Conditions,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl., 8, pp. 26–31.
Rabotnov, Y. N., 1969, Creep Problems in Structural Members, North-Holland, Amsterdam.
Lemaitre,  J., and Chaboche,  J.-L., 1978, “Aspect Phénoménologique de la Rupture par Endommagement,” J. Méca. Appliquée,2(3), pp. 318–365.
Lemaitre, J., and Chaboche, J.-L., 1990, Mechanics of Solid Materials, Cambridge University Press, Cambridge.
Lemaitre, J., 1996, A Course on Damage Mechanics, 2nd ed., Springer-Verlag, New York.
Lemaitre,  J., 1986, “Local Approach of Fracture,” Eng. Fract. Mech., 25(5/6), pp. 523–537.
Benallal,  A., Billardon,  R., and Lemaitre,  J., 1991, “Continuum Damage Mechanics and Local Approach to Fracture: Numerical Procedures,” Comput. Methods Appl. Mech. Eng., 92, pp. 141–155.
Chaboche,  J.-L., 1977, “A Differential Law for Non-Linear Cumulative Fatigue Damage,” Ann. Inst. Tech. Bat. Trav. Publics, 39, Supplement No 351, pp. 117–124.
Chaboche,  J.-L., and Lesne,  P. M., 1988, “A Nonlinear Continuous Fatigue Damage Model,” Fatigue Fract. Eng. Mater. Struct., 11(1), pp. 1–17.
EN 10028-5, 1996, “EN 10028-5, Produits Plats en Aciers pour Appareils à Pression—Parte 5: Aciers Soudable à Grains Fins, Laminé Thermomécaniquement,” Norme Européenne.
Armstrong,  P. J., and Frederick,  C. O., 1966, “A Mathematical Representation of the Multiaxial Bauschinger Effect,” G. E. G. B. Report RD/B/N 731.
Chaboche,  J.-L., 1977, “Viscoplastic Constitutive Equations for the Description of Cyclic and Anisotropic Behavior of Metals,” Bull. Acad. Pol. Sci., Ser. Sci. Tech., 25(1), pp. 33–42.
Chaboche,  J.-L., 1986, “Time-Independent Constitutive Theories for Cyclic Plasticity,” Int. J. Plast., 2(2), pp. 149–188.
Saracibar, C. A., Aleman, F., Cervera, M., and Chiumenti, M., 1998, “COMET —Coupled Mechanics and Thermal Analysis-Flow Chart,” version 1.0, Technical Report CIMNE No. IT-276, CIMNE, Barcelona, Spain.
Doghri,  I., 1993, “Fully Implicit Integration and Consistent Tangent Modulus in Elasto-Plasticity,” Int. J. Numer. Methods Eng., 36, pp. 3915–3932.
Chiumenti, M., Agelet de Saracibar, C., and Cervera, M., 1998, “A Viscoplastic Model Including Non-Linear Isotropic and Kinematic Hardening,” Publication CIMNE No. 143.
ASTM E606-92, 1998, “Standard Practice for Strain-Controlled Fatigue Testing,” in Annual Book of ASTM Standards, Part 10, American Society for Testing and Materials, West Conshohocken, PA, pp. 557–571.
Dolan, T. J., Sines, G., and Waisman, J. L., 1959, Metal Fatigue, McGraw-Hill, New York.
Juvinall, R. C., and Marshek, K. M., 1991, Fundamentals of Machine Components Design, 2nd ed., Wiley, New York.
EN 13445, 2002, “Unfired Pressure Vessels, Part 3: Design, Clause 18: Detailed Assessment for Fatigue Life,” CEN.
Miner,  A., 1945, “Cumulative Damage in Fatigue,” ASME J. Appl. Mech., 107, pp. A159–A164.
Manson,  S. S., and Halford,  G. R., 1981, “Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage,” Int. J. Fract., 17, pp. 169–192.
De Jesus, A. M. P., Ribeiro, A. S., and Fernandes, A. A., 2003, “Modelling Studies of the Fatigue Behavior of a Nozzle-to-Vessel Intersection,” in Computer Technology and Applications, PVP-Vol. 458, ASME, New York, pp. 91–98.

Figures

Grahic Jump Location
Geometry and dimensions of the specimen used in the fatigue tests (dimensions in mm)
Grahic Jump Location
Experimental and numerical cyclic curves of the P355NL1 steel
Grahic Jump Location
Simulation of the hysteresis loops of the P355NL1 steel
Grahic Jump Location
Simulation of the ratcheting behavior of the P355NL1 steel
Grahic Jump Location
Simulation of the cyclic mean stress relaxation behavior of the P355NL1 steel
Grahic Jump Location
Wöhler curves of the steel P355NL1
Grahic Jump Location
Damage evolution curves obtained for the steel P355NL1
Grahic Jump Location
Damage accumulation curves obtained for the steel P355NL1
Grahic Jump Location
Advancing in time (cycles) strategy
Grahic Jump Location
Geometry and dimensions of the nozzle-to-plate attachment (dimensions in mm)
Grahic Jump Location
Experimental and simulation fatigue results obtained for the nozzle-to-plate attachment

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In