0
Research Papers: Design and Analysis

A Methodology for Online Fatigue Monitoring With Consideration of Temperature-Dependent Material Properties Using Artificial Parameter Method

[+] Author and Article Information
Hengliang Zhang1

School of Power and Mechanical Engineering,  Wuhan University, Wuhan, Chinazhl8111@sina.com.cn

Yangheng Xiong, Chu Nie, Danmei Xie

School of Power and Mechanical Engineering,  Wuhan University, Wuhan, China

Kunfeng Sun

School of Energy and Environment Engineering,  Zhongyuan University of Technology, Zhengzhou, China

1

Corresponding author.

J. Pressure Vessel Technol 134(1), 011201 (Dec 01, 2011) (6 pages) doi:10.1115/1.4004627 History: Received March 02, 2011; Revised May 09, 2011; Published December 01, 2011; Online December 01, 2011

Following the basis of the ASME codes, the major nuclear components are designed to successfully avoid the fatigue failure. However, such design is generally very conservative and it is necessary to accurately assess the fatigue life of the components for the optimal life. The assessment of fatigue damage accumulation due to the thermal transients is currently performed via online fatigue monitoring systems. The algorithms for online calculation of thermal stress are one of the main components of these systems and are often based on the Green function technique (GFT), in which machine parameters such as fluid temperatures, pressures, and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used when the temperature-dependent material properties are considered. This paper presents a methodology to consider the temperature- dependent material properties using artificial parameter method. Two cases are presented to compare the results calculated from the proposed models with those calculated by finite element method (FEM). It is found that the temperature-dependent material properties have significant influence on the maximum peak stresses which can be accurately captured by the models proposed in this work.

FIGURES IN THIS ARTICLE
<>
Copyright © 2012 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Figure 1

Geometry and boundary conditions of the hollow

Grahic Jump Location
Figure 2

Axial, tangential, and Von Mise stresses calculated by FEM with temperature-independent material properties, FEM with temperature-dependent material properties, and the method presented with temperature-dependent material properties

Grahic Jump Location
Figure 3

The sketch map and geometrical dimensions of the nozzle

Grahic Jump Location
Figure 4

Tangential thermal stress at the point A

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In