Timoshenko, S. P., and Woinowsky-Krieger, S., 1959, "*Theory of Plates and Shells*", McGraw-Hill, New York.

Ren, G. J., 1987, “Exact Solutions for Laminated Cylindrical Shells in Cylindrical Bending,” Compos. Sci. Technol., 29 , pp. 169–187.

[CrossRef]Kirchhoff, G., 1850, “Über das Gleichgewicht und die Bewegung einer elastishen Sceibe,” J. Reine Angew. Math., 40 , pp. 51–88.

Love, A. E. H., 1959, "*A Treatise on the Mathematical Theory of Elasticity*", Cambridge University Press, Cambridge.

Ren, G. J., 1989, “Analysis of Simply-Supported Laminated Circular Cylindrical Shell Roofs,” Compos. Struct., 11 , pp. 277–292.

[CrossRef]Yuan, F. G., 1992, “Exact Solutions for Laminated Composite Cylindrical Shells in Cylindrical Bending,” J. Reinf. Plast. Compos., 11 (4), pp. 340–371.

[CrossRef]Varadan, T. K., and Bhaskar, K., 1991, “Bending of Laminated Orthotropic Cylindrical Shells—An Elasticity Approach,” Compos. Struct., 17 , pp. 141–156.

[CrossRef]Bhaskar, K., and Varadan, T. K., 1993, “Exact Elasticity Solution for Laminated Anisotropic Cylindrical Shells,” ASME J. Appl. Mech., 60 , pp. 41–47.

[CrossRef]Bhaskar, K., and Varadan, T. K., 1994, “Benchmark Elasticity Solution for Locally Loaded Laminated Orthotropic Cylindrical Shells,” AIAA J., 32 , pp. 627–632.

[CrossRef]Bhaskar, K., and Ganapathysaran, N., 2003, “Elasticity Solutions for Laminated Orthotropic Cylindrical Shells Subjected to Localized Longitudinal and Circumferential Moments,” ASME J. Pressure Vessel Technol., 125 , pp. 26–35.

[CrossRef]Bhimaraddi, A., and Chandrashekhara, K., 1992, “Three-Dimensional Elasticity Solution for Static Response of Simply Supported Orthotropic Cylindrical Shells,” Compos. Struct., 20 , pp. 227–235.

[CrossRef]Chandrashekhara, K., and Kumar, B. S., 1993, “Static Analysis of Thick Laminated Circular Cylindrical Shells,” ASME J. Pressure Vessel Technol., 115 , pp. 193–200.

[CrossRef]Grigolyuk, E. I., and Kulikov, G. M., 1988, “General Directions of the Development of the Theory of Shells,” Mekh. Kompoz. Mater., 2 , pp. 287–298.

Kapania, R. K., 1989, “A Review on the Analysis of Laminated Shells,” ASME J. Pressure Vessel Technol., 111 , pp. 88–96.

Noor, A. K., and Burton, W. S., 1990, “Assessment of Computational Models for Multilayered Composite Shells,” Appl. Mech. Rev., 43 , pp. 67–97.

Noor, A. K., Burton, W. S., and Bert, C. W., 1996, “Computational Models for Sandwich Panels and Shells,” Appl. Mech. Rev., 49 , pp. 155–199.

[CrossRef]Carrera, E., 2002, “Theories and Finite Elements for Multilayered Plates and Shells,” Arch. Comput. Methods Eng., 9 , pp. 87–140.

[CrossRef]Reddy, J. N., 1997, "*Mechanics of Laminated Composite Plates and Shells. Theory and Analysis*", CRC, Boca Raton, FL.

Bhimaraddi, A., 1984, “A Higher Order Theory for Free Vibration Analysis of Circular Cylindrical Shells,” Int. J. Solids Struct., 20 , pp. 623–630.

[CrossRef]Bhimaraddi, A., 1987, “Static and Transient Response of Cylindrical Shells,” Thin-Walled Struct., 5 , pp. 157–179.

[CrossRef]Lindberg, G. M., Olson, M. D., and Cowper, G. R., 1969, “New Developments in the Finite Element Analysis of Shells,” Quarterly Bulletin of the Division of Mechanical Engineering and The National Aeronautical Establishment, 4 , pp. 1–38.

Heppler, G. R., and Hansen, J. S., 1986, “A Mindlin Element for Thick and Deep Shells,” Comput. Methods Appl. Mech. Eng., 54 , pp. 21–47.

[CrossRef]Kulikov, G. M., and Plotnikova, S. V., 2002, “Simple and Effective Elements Based Upon Timoshenko-Mindlin Shell Theory,” Comput. Methods Appl. Mech. Eng., 191 , pp. 1173–1187.

[CrossRef]Koiter, W. T., 1959, “A Consistent First Approximation in the General Theory of Thin Elastic Shells,” Proceedings of the First IUTAM Symposium on the Theory of Thin Elastic Shells , Delft, The Netherlands, pp. 12–23.

Carrera, E., 1999, “A Study of the Transverse Normal Stress Effect on Vibration of Multilayered Plates and Shells,” J. Sound Vib., 225 (5), pp. 803–829.

[CrossRef]Demasi, L., 2008, “∞3 Hierarchy Plate Theories for Thick and Thin Composite Plates: The Generalized Unified Formulation,” Compos. Struct., 84 , pp. 256–270.

[CrossRef]Carrera, E., 2003, “Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation With Numerical Assessment and Benchmarking,” Arch. Comput. Methods Eng., 10 , pp. 215–296.

[CrossRef]Carrera, E., and Giunta, G., 2007, “Hierarchical Closed Form Solutions for Plates Bent by Localized Transverse Loadings,” J. Zhejiang Univ.—Sci. A, 8 , pp. 1026–1037.

[CrossRef]Carrera, E., and Giunta, G., 2008, “Hierarchical Models for Failure Analysis of Plates Bent by Distributed and Localized Transverse Loadings,” J. Zhejiang Univ.—Sci. A, 9 , pp. 600–613.

[CrossRef]Carrera, E., and Ciuffreda, A., 2005, “Bending of Composites and Sandwich Plates Subjected to Localized Lateral Loadings: A Comparison of Various Theories,” Compos. Struct., 68 , pp. 185–202.

[CrossRef]Carrera, E., and Ciuffreda, A., 2005, “A Unified Formulation to Assess Theories of Multilayered Plates for Various Bending Problems,” Compos. Struct., 69 , pp. 271–293.

[CrossRef]Carrera, E., and Demasi, L., 2003, “Two Benchmarks to Assess Two-Dimensional Theories of Sandwich, Composites Plates,” AIAA J., 41 , pp. 1356–1362.

[CrossRef]Carrera, E., 1999, “Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 1: Governing Equations,” AIAA J., 37 , pp. 1107–1116.

[CrossRef]Carrera, E., 1999, “Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 2: Numerical Evaluations,” AIAA J., 37 , pp. 1117–1124.

[CrossRef]Cauchy, A. L., 1828, “Sur l’équilibre et le mouvement d’une plaque solide,” Exercises de Matematique, 3 , pp. 328–355.

Poisson, S. D., 1829, “Mémoire sur l’équilibre et le mouvement des corps élastique,” Mémoires de l’Académie des Sciences de Paris, 8 , pp. 357–570.

Carrera, E., 2000, “A Priori vs. a Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates,” Compos. Struct., 48 , pp. 245–260.

[CrossRef]Carrera, E., and Brischetto, S., 2008, “Analysis of Thickness Locking in Classical, Refined and Mixed Multilayered Plate Theories,” Compos. Struct., 82 , pp. 549–562.

[CrossRef]Carrera, E., and Brischetto, S., 2008, “Analysis of Thickness Locking in Classical, Refined and Mixed Theories for Layered Shells,” Compos. Struct., 85 , pp. 83–90.

[CrossRef]Reissner, E., 1945, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” ASME J. Appl. Mech., 12 , pp. 69–76.

Mindlin, E., 1951, “Influence of the Rotatory Inertia and Shear in Flexural Motions of Isotropic Elastic Plates,” ASME J. Appl. Mech., 18 , pp. 1031–1036.

Carrera, E., 2003, “Historical Review of Zig-Zag Theories for Multilayered Plates and Shells,” Appl. Mech. Rev., 56 , pp. 287–308.

[CrossRef]Murakami, M., 1986, “Laminated Composites Plate Theory With Improved In-Plane Response,” ASME J. Appl. Mech., 53 , pp. 661–666.

Carrera, E., 2004, “On the Use of Murakami’s Zig-Zag Function in the Modeling of Layered Plates and Shells,” Compos. Struct., 82 , pp. 541–554.

[CrossRef]Reissner, E., 1984, “On a Certain Mixed Variational Theorem and a Proposed Application,” Int. J. Numer. Methods Eng., 20 , pp. 1366–1368.

[CrossRef]Reissner, E., 1986, “On a Mixed Variational Theorem and on Shear Deformable Plate Theory,” Int. J. Numer. Methods Eng., 23 , pp. 193–198.

[CrossRef]Federer, H., 1945, “The Gauss-Green Theorem,” Trans. Am. Math. Soc., 58 , pp. 44–76.

[CrossRef]Carrera, E., Giunta, G., and Brischetto, S., 2007, “Hierarchical Models for Laminated Composite Shells under Localized Bending Loading,” 11th International Conference on Enhancement of Computational Methods in Engineering and Sciences , Kyoto, Japan.

Petras, A., and Sutcliffe, M. P. F., 2000, “Indentation Failure Analysis of Sandwich Beams,” Compos. Struct., 50 , pp. 311–318.

[CrossRef]Shuaeib, F. M., and Soden, P. D., 1997, “Indentation Failure of Composite Sandwich Beams,” Compos. Sci. Technol., 57 , pp. 1249–1259.

[CrossRef]