Research Papers: Materials and Fabrication

Fatigue Limit Prediction of the Matrix of 17-4PH Stainless Steel Based on Small Crack Mechanics

[+] Author and Article Information
Defu Nie

National Technology Research Center
on PVP Safety Engineering,
(Hefei General Machinery Research Institute),
Hefei, Anhui, 230031China
e-mail: dove_ndf@sina.com.cn

Yoshiharu Mutoh

Nagaoka University of Technology,
Nagaoka, Niigata 940-2188, Japan
e-mail: mutoh@mech.nagaokaut.ac.jp

Contributed by the Pressure Vessel and Piping Division of ASME for publication in the Journal of Pressure Vessel Technology. Manuscript received July 23, 2012; final manuscript received December 6, 2012; published online March 18, 2013. Assoc. Editor: Xian-Kui Zhu.

J. Pressure Vessel Technol 135(2), 021407 (Mar 18, 2013) (5 pages) Paper No: PVT-12-1102; doi: 10.1115/1.4023428 History: Received July 23, 2012; Revised December 06, 2012

The experimentally obtained fatigue limit of high strength steel is generally a value reduced by inherent flaws, and such a value does not characterize the resistance of the matrix of high strength steel to cyclic loading. To investigate the fatigue limit of the matrix, fatigue tests of 17-4PH stainless steel were performed. 17-4PH stainless steel showed a distinct dual-stage S-N curve: one stage corresponding to high stress where crack initiated at the surface and another stage corresponding to low stress where crack initiated from the subsurface inclusion (Al2O3). Based on small crack mechanics, a model was proposed to predict the fatigue limit of the matrix of 17-4PH stainless steel and its validity has been discussed.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Fig. 6

Comparison of experimental data and modified Basquin equation

Grahic Jump Location
Fig. 7

Comparison of the observed and predicted lives in 17-4PH stainless steel

Grahic Jump Location
Fig. 5

EDS analysis of crack initiation sites (a) with an inclusion and (b) without inclusions

Grahic Jump Location
Fig. 4

Examples of fracture surface observations (a) σa = 700 MPa and (b) σa = 750 MPa

Grahic Jump Location
Fig. 3

Dual-stage S-N curve of 17-4PH stainless steel (smooth specimens)

Grahic Jump Location
Fig. 2

Schematic diagram showing dimensions of (a) smooth specimen and (b) CT specimen (all dimensions in mm)

Grahic Jump Location
Fig. 1

Microstructure of 17-4PH stainless steel in H1025 condition

Grahic Jump Location
Fig. 8

Fatigue crack growth behavior of 17-4PH stainless steel




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In