0
Research Papers: Materials and Fabrication

Effects of Pressurized Water Reactor Medium on the Fatigue Life of Austenitic Stainless Steels

[+] Author and Article Information
Paul Wilhelm

Mechanical Analyses,
AREVA GmbH,
Henri-Dunant-Str. 50,
Erlangen 91058, Germany
e-mail: paul.wilhelm@areva.com

Jürgen Rudolph

Mechanical Analyses,
AREVA GmbH,
Henri-Dunant-Str. 50,
Erlangen 91058, Germany
e-mail: rudolph.juergen@areva.com

Paul Steinmann

Department of Mechanical Engineering,
University of Erlangen–Nuremberg,
Egerlandstr. 5,
Erlangen 91058, Germany
e-mail: paul.steinmann@ltm.uni-erlangen.de

If documented.

If documented.

Contributed by the Pressure Vessel and Piping Division of ASME for publication in the JOURNAL OF PRESSURE VESSEL TECHNOLOGY. Manuscript received November 28, 2014; final manuscript received February 11, 2015; published online May 21, 2015. Assoc. Editor: Marina Ruggles-Wrenn.

J. Pressure Vessel Technol 137(6), 061404 (Dec 01, 2015) (7 pages) Paper No: PVT-14-1194; doi: 10.1115/1.4029832 History: Received November 28, 2014; Revised February 11, 2015; Online May 21, 2015

A statistical model for austenitic stainless steels for predicting the effect of pressurized water reactor (PWR) environments on fatigue life for a range of temperatures and strain rates is developed based on analysis of available material data from USA, Europe, and Japan. Only fatigue data from polished specimens of wrought material tested under strain control were considered. Hollow specimens were not treated in the final calculations. The fatigue life correction factors were defined as the ratio of life in water at 300 °C (572 °F) (reference conditions) to that in water at service conditions. The model is recommended for predicting fatigue lives that are 103–105 cycles.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chopra, O. K., and Stevens, G. L., 2014, “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials,” Rev. 1, ANL, Argonne, IL, Technical Report No. NUREG/CR–6909. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6909/
Hasegawa, H., 2011, “Nuclear Power Generation Facilities—Environmental Fatigue Evaluation Method for Nuclear Power Plants,” JNES, Minato-ku, Japan, Technical Report No. SS–1005.
Leax, T. R., 1997, “Statistical Models of Mean Stress and Water Environment Effects on the Fatigue Behavior of 304 Stainless Steel,” Bechtel Bettis, West Mifflin, PA, Technical Report No. DE–AC11–98PN38206.
Xiao, J., Qiu, S. Y., Chen, Y., and Xu, Q., 2012, “Prediction Model for Corrosion Fatigue Lives of Austenitic Stainless Steels in Pressurized Water Reactor Environments,” Corrosion, 68(1), p. 015004. [CrossRef]
NUGENIA, 2014, “AdFaM Project.” Available at: http://s538600174.onlinehome.fr/nugenia/portfolio/adam-project/
Tregoning, R., 2014, personal communication with U. S. Nuclear Regulatory Commission.
Millett, P., 1999, “PWR Primary Water Chemistry Guidelines,” EPRI, Palo Alto, CA, Technical Report No. TR–105714–V1R4.
Bilanin, W., 1988, “BWR Normal Water Chemistry Guidelines: 1986 Revision,” EPRI, Palo Alto, CA, Technical Report No. NP–4946–SR.
Keller, D. L., 1971, “Progress on LMFBR Cladding, Structural, and Component Materials Studies During July, 1970–June, 1971,” National Technical Information Service, U.S. Department of Commerce, Springfield, VA, Technical Report No. BMI-1914.
Conway, J. B., Stentz, R. H., and Berling, J. T., 1975, “Fatigue, Tensile, and Relaxation Behavior of Stainless Steels,” National Technical Information Service, U.S. Department of Commerce, Springfield, VA, Technical Report No. TID-26135.
Hale, D. A., Wilson, S. A., Kiss, E., and Giannuzzi, A. J., 1977, “Low Cycle Fatigue Evaluation of Primary Piping Materials in a BWR Environment,” General Electric, San Jose, CA, Technical Report No. GEAP–20244.
Chopra, O. K., 1999, “Effects of LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steels,” ANL, Argonne, IL, Technical Report No. NUREG/CR–5704. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr5704/cr5704.pdf
Chopra, O. K., and Shack, W. J., 2001, “Environmental Effects on Fatigue Crack Initiation in Piping and Pressure Vessel Steels,” ANL, Argonne, IL, Technical Report No. NUREG/CR–6717. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6717/
Chopra, O. K., 2002, “Mechanism and Estimation of Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments,” ANL, Argonne, IL, Technical Report No. NUREG/CR–6787. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6787/
Chopra, O. K., and Shack, W. J., 2003, “Review of the Margins for ASME Code Fatigue Design Curve—Effects of Surface Roughness and Material Variability,” ANL, Argonne, IL, Technical Report No. NUREG/CR–6815. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6815/
Chopra, O. K., Alexandreanu, B., and Shack, W. J., 2005, “Effect of Material Heat Treatment on Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments,” ANL, Argonne, IL, Technical Report No. NUREG/CR–6878. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6878/
Solomon, H. D., Amzallag, C., DeLair, R. E., and Vallee, A. J., 2005, “107 Cycle Fatigue Limit of Type 304L SS in Air and PWR Water, at 150 °C and 300 °C,” Proceedings of the Minerals, Metals & Materials Society: Environmental Degradation of Materials in Nuclear Power System: Water Reactors, Salt Lake City, UT, pp. 1083–1089.
Solomon, H. D., Amzallag, C., DeLair, R. E., and Vallee, A. J., 2005, “Comparison of the Fatigue Life of Type 304L SS as Measured in Load and Strain Controlled Tests,” Proceedings of the Minerals, Metals & Materials Society: Environmental Degradation of Materials in Nuclear Power System: Water Reactors, Salt Lake City, UT, pp. 1101–1110.
Kanasaki, H., Umehara, R., Mizuta, H., and Suyama, T., 1997, “Fatigue Lives of Stainless Steels in PWR Primary Water,” Proceedings of the SMiRT 14, Lyon, France, Paper No. D07/1.
Le Duff, J. A., Lefrançois, A., and Vernot, J. P., 2008, “Effects of Surface Finish and Loading Conditions on the Low Cycle Fatigue Behavior of Austenitic Stainless Steel in PWR Environment: Comparison of LCF Test Results With NUREG/CR–6909 Life Estimations,” ASME Paper No. PVP2008-61894. [CrossRef]
Le Duff, J. A., Lefrançois, A., and Vernot, J. P., 2009, “Effects of Surface Finish and Loading Conditions on the Low Cycle Fatigue Behavior of Austenitic Stainless Steel in PWR Environment for Various Strain Amplitude Levels,” ASME Paper No. PVP2009-78129. [CrossRef]
Le Duff, J. A., Lefrançois, A., Vernot, J. P., and Bossu, D., 2010, “Effect of Loading Signal Shape and of Surface Finish on the Low Cycle Fatigue Behavior of 304L Stainless Steel in PWR Environment,” ASME Paper No. PVP2010-26027. [CrossRef]
Baglion, L. D., 2011, “Comportement et Endommagement en Fatigue Oligocyclique d'un Acier Inoxydable Austénitique 304L en Fonction de l'environnement (vide, air, eau primaire REP) à 300 °C [Low Cycle Fatigue Behavior and Damaging Effects of Austenitic Stainless Steel Type 304L as a Function of Environment (Vacuum, Air, Primary Water of PWR) at 300 °C],” Ph.D. thesis, Institut Pprime, Univ. de Poitiers, Poitiers, France (in French).
De Baglion, L., Mendez, J., Le Duff, J. A., and Lefrançois, A., 2012, “Influence of PWR Primary Water on LCF Behavior of Type 304L Austenitic Stainless Steel at 300 °C: Comparison With Results Obtained in Vacuum or in Air,” ASME Paper No. PVP2012-78767. [CrossRef]
Huin, N., 2013, “Environmental Effect on Cracking of a 304L Austenitic Stainless Steel in PWR Primary Environment Under Cyclic Loading,” Ph.D. thesis, Institut Pprime, Univ. de Poitiers, Poitiers, France.
Wang, Y., and Stumpfrock, L., 2007, “Numerische Bewertung der Auswirkung von Ratcheting auf das Verformungs- und Versagensverhalten von Bauteilen [Numerical Valuation of Ratcheting Effects on the Deformation and Failure Behaviour of Components],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMWi 1501285 (in German).
Weißenberg, T., 2007, “Zentrale Untersuchung und Auswertung von Herstellungsfehlern und Betriebsschäden im Hinblick auf druckführende Anlagenteile von Kernkraftwerken. Arbeitspaket 3.1: Einfluss des Reaktorkühlmediums auf das Ermüdungsverhalten austenitischer CrNi-Stähle [Work Package 3.1: Investigation of the Influence of the Reactor Coolant on the Fatigue Behaviour of Austenitic Stainless Steels],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMU SR 2501 (in German).
Reicherter, B., Schuler, X., and Herter, K.-H., 2009, “Nachweis der Ermüdungsfestigkeit bei Kerntechnischen Komponenten aus Ferritischen und Austenitischen Werkstoffen [Proof of Fatigue Strength of Ferritic and Austenitic Nuclear Components],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMWi 1501296 (in German).
Roth, A., 2011, “News From Hold-Time-Effects in Fatigue,” Materials Testing Institute (MPA)-Seminar, University of Stuttgart, Stuttgart, Germany, Workshop.
Weißenberg, T., 2011, “Zentrale Untersuchung und Auswertung von Herstellungsfehlern und Betriebsschäden im Hinblick auf druckführende Anlagenteile von Kernkraftwerken. Arbeitspaket 3: Korrosionsuntersuchungen. Teilbericht 3.1: Untersuchung des Einflusses von Reaktorkühlmedium auf das Ermüdungsverhalten austenitischer CrNi-Stähle [Work Package 3.1: Investigation of the Influence of the Reactor Coolant on the Fatigue Behaviour of Austenitic Stainless Steels],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMU SR 08 01312 (in German).
Soppa, E. A., and Kohler, C., 2011, “Mikromechanische und Atomistische Modellierung der Anrissbildung bei Ermüdungsbeanspruchten Stählen [Micromechanical and Atomistic Modelling of Crack Initiation and Crack Development in Fatigued Steels],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMWi 1501353 (in German).
Fesich, T. M., Herter, K.-H., and Schuler, X., 2012, “Sicherheitsbewertung Kerntechnischer Komponenten bei Komplexer, Mehrachsiger Schwingbeanspruchung [Safety Assessment of Reactor Components Under Complex Multiaxial Cyclic Loading],” Materials Testing Institute, University of Stuttgart, Germany, Technical Report No. BMWi 1501392 (in German).
Bauerbach, K., Beier, H., Schlitzer, T., Fischaleck, M., Scholz, A., Willuweit, A., Rudolph, J., and Vormwald, M., 2013, “Thermische Wechselbeanspruchung. Teilprojekt: Numerische Simulation und Experimentelle Charakterisierung des Ermüdungsrisswachstums unter Thermozyklischer Beanspruchung [Thermal Alternating Loading. Subproject: Simulation and Characterization of the Material State of Components Subjected to Thermal Cyclic Loading Conditions],” Department Mechanics of Materials, Technical University of Darmstadt, Darmstadt, Germany, Technical Report No. BMBF 02NUK009D (in German).
Schuler, X., Herter, K.-H., and Rudolph, J., 2013, “Derivation of Design Fatigue Curves for Austenitic Stainless Steel Grades 1.4541 and 1.4550 Within the German Nuclear Safety Standard KTA 3201.2,” ASME Paper No. PVP2013-97138. [CrossRef]
Solin, J. P., 2006, “Fatigue of Stabilized SS and 316 NG Alloy in PWR Environment,” ASME Paper No. PVP2006-93833.
Solin, J. P., Reese, S., and Mayinger, W., 2011, “Long Life Fatigue Performance of Stainless Steel,” ASME Paper No. PVP2011-57942. [CrossRef]
Solin, J. P., Reese, S., and Mayinger, W., 2012, “Fatigue Performance of Stainless Steel in NPP Service Conditions,” ASME Paper No. PVP2012-78721. [CrossRef]
Keisler, J. M., Chopra, O. K., and Shack, W. J., 1996, “Statistical Models for Estimating Fatigue Strain-Life Behavior of Pressure Boundary Materials in Light Water Reactor Environments,” Nucl. Eng. Des., 167(2), pp. 129–154. [CrossRef]
Wilhelm, P., Steinmann, P., and Rudolph, J., 2014, “Discussion of Fatigue Data for Austenitic Stainless Steels,” ASME Paper No. PVP2014-28066. [CrossRef]
Langer, B. F., 1962, “Design of Pressure Vessels for Low-Cycle Fatigue,” J. Basic Eng., 84(3), pp. 389–399. [CrossRef]
Nebel, T., 2002, “Verformungsverhalten und Mikrostruktur Zyklisch Beanspruchter Metastabiler Austenitischer Stähle [Deformation Behavior and Microstructure of Metastable Austenitic Stainless Steels Under Cyclic Loading],” Ph.D. thesis, Univ. Kaiserslautern, Kaiserslautern, Germany (in German).
Smaga, M., 2005, “Experimentelle Untersuchung der Mikrostruktur sowie des Verformungs- und Umwandlungsverhaltens zyklisch Beanspruchter Metastabiler Austenitischer Stähle [Experimental Investigations of Microstructure, Deformation and Transformation Behavior of Metastable Austenitic Stainless Steels Under Cyclic Loading],” Ph.D. thesis, Univ. Kaiserslautern, Kaiserslautern, Germany (in German).
Bastenaire, F. A., 1971, “New Method for the Statistical Evaluation of Constant Stress Amplitude Fatigue-Test Result,” Symposium of Probabilistic Aspects of Fatigue, ASTM Annual Meeting, Atlantic City, NY, Paper No. ASTM STP511.
Kim, Y. J., 1995, “Characterization of the Oxide Film Formed on Type 316 Stainless Steel in 288 °C Water in Cyclic Normal and Hydrogen Water Chemistries,” Corrosion, 51(11), pp. 849–860. [CrossRef]
Kim, Y. J., 1999, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288 °C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide,” Corrosion, 55(1), pp. 81–88. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Best-fit curve in air at room temperature

Grahic Jump Location
Fig. 2

Reference curve for PWR medium environment

Grahic Jump Location
Fig. 3

Fatigue life of type 304L in air and water environment

Grahic Jump Location
Fig. 4

Dependence of tensile strain rate on fatigue life

Grahic Jump Location
Fig. 5

Effect of strain rate

Grahic Jump Location
Fig. 6

Strain rate correction factor

Grahic Jump Location
Fig. 7

Fatigue life of types 304L, 304, and 316NG

Grahic Jump Location
Fig. 8

Fatigue life of types 304 and 316NG at different tensile strain rates

Grahic Jump Location
Fig. 9

Fatigue life of type 304

Grahic Jump Location
Fig. 10

Experimental and predicted values of fatigue lives

Grahic Jump Location
Fig. 11

Experimental and predicted values of fatigue lives

Grahic Jump Location
Fig. 12

Comparison of prediction models: effects of tensile strain rate

Grahic Jump Location
Fig. 13

Comparison of prediction models for tube specimens

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In