0
Research Papers: Design and Analysis

Mechanical and Thermal Stresses in FGPPM Hollow Cylinder Due to Radially Symmetric Loads

[+] Author and Article Information
M. Jabbari

Assistant Professor
Department of Mechanical Engineering,
Islamic Azad University,
South Tehran Branch,
Tehran 1434743145, Iran
e-mail: m_jabbari@azad.ac.ir

M. Meshkini

Department of Mechanical Engineering,
Sharif University of Technology, Tehran,
International Campus,
Kish 6174714761, Iran
e-mail: meshkini@kish.sharif.ir

M. R. Eslami

Professor
Fellow of the Academy of Sciences
Fellow ASME
Department of Mechanical Engineering,
Amirkabir University of Technology,
Tehran 158754413, Iran
e-mail: eslami@aut.ac.ir

1Corresponding author.

Contributed by the Pressure Vessel and Piping Division of ASME for publication in the JOURNAL OF PRESSURE VESSEL TECHNOLOGY. Manuscript received August 2, 2012; final manuscript received August 5, 2015; published online October 6, 2015. Assoc. Editor: Albert E. Segall.

J. Pressure Vessel Technol 138(1), 011207 (Oct 06, 2015) (9 pages) Paper No: PVT-12-1115; doi: 10.1115/1.4031372 History: Received August 02, 2012; Revised August 05, 2015

In this paper, the general solution of steady-state 1D radially symmetric mechanical and thermal stresses and electrical and mechanical displacements for a hollow thick cylinder made of fluid-saturated functionally graded poro piezoelectric materials (FGPPMs) is developed. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and nonhomogenous system of partial differential Navier equations, using complex Fourier series and power law functions method. The material properties, except the Poisson ratio, are assumed to depend on the radial variable r and they are expressed as power law functions.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Qin, Q.-H. , 2001, Fracture Mechanics of Piezoelectric Materials, WIT, Southampton.
Lutz, M. P. , and Zimmerman, R. W. , 1996, “ Thermal Stresses and Effective Thermal Expansion Coefficient of Functionally Graded Sphere,” J. Therm. Stresses, 19(1), pp. 39–54. [CrossRef]
Zimmerman, R. W. , and Lutz, M. P. , 1999, “ Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder,” J. Therm. Stresses, 22(2), pp. 177–188. [CrossRef]
Jabbari, M. , Sohrabpour, S. , and Eslami, M. R. , 2003, “ General Solution for Mechanical and Thermal Stresses in Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads,” ASME J. Appl. Mech., 70(1), pp. 111–118. [CrossRef]
Jabbari, M. , Sohrabpourb, S. , and Eslami, M. R. , 2002, “ Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads,” Int. J. Pressure Vessels Piping, 79(7), pp. 493–497. [CrossRef]
Jabbari, M. , Bahtui, A. , and Eslami, M. R. , 2009, “ Axisymmetric Mechanical and Thermal Stresses in Thick Short Length Functionally Graded Material Cylinder,” Int. J. Pressure Vessels Piping, 86(5), pp. 296–306. [CrossRef]
Jourine, S. , Valkoo, P. P. , and Kronenberg, A. K. , 2004, “ Modelling Poroelastic Hollow Cylinder Experiments With Realistic Boundary Conditions,” Int. J. Numer. Anal. Methods Geomech., 28(12), pp. 1189–1205. [CrossRef]
Kanj, M. , Abousleiman, Y. , and Ghanem, R. , 2003, “ Poromechanics of Anisotropic Hollow Cylinders,” ASCE J. Eng. Mech., 129(11), p. 1277. [CrossRef]
Abousleiman, Y. , and Ekboote, S. , 2005, “ Solutions for Inclined Borehole in Porothermoelastic Transversely Isotropic Medium,” ASME J. Appl. Mech., 72(2), pp. 102–114. [CrossRef]
Chen, P. Y. P. , 1980, “ Axisymmetric Thermal Stresses in an Anisotropic Finite Hollow Cylinder,” J. Therm. Stresses, 6(2–4), pp. 197–205.
Bai, B. , 2006, “ Fluctuation Responses of Saturated Poro Media Subjected to Cyclic Thermal Loading,” Comput. Geotech., 33(8), pp. 396–403. [CrossRef]
Ding, H. J. , and Chen, W. Q. , 2001, Three Dimensional Problems of Piezoelasticity, Nova Science Publishers, New York.
Ding, H. J. , Wang, H. M. , and Chen, W. Q. , 2004, “ Analytical Solution of a Special Non-Homogeneous Pyroelectric Hollow Cylinder for Piezothermoelastic Axisymmetric Plane Strain Dynamic Problems,” Appl. Math. Comput., 151(2), pp. 423–441. [CrossRef]
Dai, H. L. , and Wang, X. , 2005, “ Thermo-Electro-Elastic Transient Responses in Piezoelectric Hollow Structures,” Int. J. Solids Struct., 42(3–4), pp. 1151–1171. [CrossRef]
Kapuria, S. , Ahmed, A. , and Dumir, P. C. , 2004, “ Static and Dynamic Thermo-Electro-Mechanical Analysis of Angle-Ply Hybrid Piezoelectric Beams Using an Efficient Coupled Zigzag Theory,” Compos. Sci. Technol., 64(16), pp. 2463–2475. [CrossRef]
Ding, H. J. , Wang, H. M. , and Ling, D. S. , 2003, “ Analytical Solution of a Pyroelectric Hollow Cylinder for Piezothermoelastic Axisymmetric Dynamic Problems,” J. Therm. Stresses, 26(3), pp. 261–276. [CrossRef]
Kirilyuk, V. S. , 2006, “ On the Relationship Between the Solutions of Static Contact Problems of Elasticity and Electroelasticity for a Half-Space,” Int. Appl. Mech., 42(11), pp. 1256–1269.
Wu, C. C. M. , Kahn, M. , and Moy, W. , 1996, “ Piezoelectric Ceramics With Functionally Gradients a New Application in Material Design,” J. Am. Ceram. Soc., 79(3), pp. 809–812. [CrossRef]
Shelley, W. F. , Wan, S. , and Bowman, K. J. , 1999, “ Functionally Graded Piezoelectric Ceramics,” Mater. Sci. Forum, 308–311, pp. 515–520. [CrossRef]
Zhu, X. H. , Zu, J. , Meng, Z. Y. , Zhu, J. M. , Zhou, S. H. , Li, Q. , Liu, Z. , and Ming, N. , 2000, “ Micro Displacement Characteristics and Microstructures of Functionally Graded Piezoelectric Ceramic Actuator,” Mater. Des., 21(6), pp. 561–566. [CrossRef]
Alibeigloo, A. , and Chen, W. Q. , 2010, “ Elasticity Solution for an FGM Cylindrical Panel Integrated With Piezoelectric Layers,” Eur. J. Mech., A/Solids, 29(4), pp. 714–723. [CrossRef]
Qian, Z.-H. , Jin, F. , Lu, T. , Kishimoto, K. , and Hirose, S. , 2010, “ Effect of Initial Stress on Love Waves in a Piezoelectric Structure Carrying a Functionally Graded Material Layer,” Ultrasonics, 50(1), pp. 84–90. [CrossRef] [PubMed]
Dai, H.-L. , Hong, L. , Fu, Y.-M. , and Xiao, X. , 2010, “ Analytical Solution for Electro Magnetothermoelastic Behaviors of a Functionally Graded Piezoelectric Hollow Cylinder,” Appl. Math. Modell., 34(4), pp. 343–357. [CrossRef]
Chen, W. Q. , Bian, Z. G. , Lv, C. F. , and Ding, H. J. , 2004, “ 3D Free Vibration Analysis of a Functionally Graded Piezoelectric Hollow Cylinder Filled With Compressible Fluid,” Int. J. Solids Struct., 41(3–4), pp. 947–964. [CrossRef]
Chen, X. L. , Zhao, Z. Y. , and Liew, K. M. , 2008, “ Stability of Piezoelectric FGM Rectangular Plates Subjected to Non-Uniformly Distributed Load, Heat and Voltage,” Adv. Eng. Software, 39(2), pp. 121–131. [CrossRef]
Dantziger, A. J. , 2001, “ Multi Component Systems of Ferroelectric Solid Solutions: Physics Crystallochemistry, Technology,” Design Aspects of Piezoelectric Materials, Vol. 1–2, Rostov State University Press, Rostov State University Press, Rostov on Don. (In Russian)
Rybjanets, A. N. , Razumovskaya, O. N. , Reznitchenko, L. A. , Komarov, V. D. , and Komarov, A. V. , 2004, “ Lead Titanate and Lead Metaniobate Poro Ferroelectric Ceramics,” Integr. Ferroelectr., 63(1), pp. 197–200. [CrossRef]
Rybjanets, A. N. , Razumovskaya, O. N. , Reznitchenko, L. A. , Turik, S. A. , Alioshin, V. A. , and Turik, A. V. , 2004, “ Poro Piezo Ceramics Fabrication Methods, Mathematical Models, Experiment,” Izv. Skncvs. Tech. Sci., pp. 82–90.
Li, J.-F. , Takagi, K. , Ono, M. , Pan, W. , and Watanabe, R. , 2003, “ Fabrication and Evaluation of Poro Piezoelectric Ceramics and Porosity-Graded Piezoelectric Actuators,” J. Am. Ceram. Soc., 86(7), pp. 1094–1098. [CrossRef]
Zielinski, T. G. , 2010, “ Fundamentals of Multi Physics Modeling of Piezo-Poro-Elastic Structures,” Arch. Mech., 62(5), pp. 343–378.
Bowen, C. R. , Perry, A. , Lewis, A. C. F. , and Kara, H. , 2004, “ Processing and Properties of Poro Piezoelectric Materials With High Hydrostatic Figures of Merit,” J. Eur. Ceram. Soc., 24(2), pp. 541–545. [CrossRef]
Shaw, C. P. , Whatmore, R. W. , and Alcock, J. R. , 2007, “ Poro, Functionally-Gradient Pyroelectric Materials,” J. Am. Ceram. Soc., 90(1), pp. 137–142. [CrossRef]
Jabbari, M. , Meshkini, M. , and Eslami, M. R. , 2011, “ Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Radially Symmetric Loads,” ISRN Mech. Eng., 2011, p. 291409.
Abdulhakim, A. , Taya, M. , Takagi, K. , Li, J.-F. , and Watanabe, R. , 2002, “ Fabrication and Modeling of Poro FGM Piezoelectric Actuators,” Proc. SPIE, 4701, pp. 467–476.
Jabbari, M. , Meshkini, M. , and Eslami, M. R. , 2012, “ Non-Axisymmetric Mechanical and Thermal Stresses in a FGPPMs Hollow Cylinder,” Int. J. Pressure Vessels Piping, 134(6), p. 061212. [CrossRef]

Figures

Grahic Jump Location
Fig. 12

Radial displacement in the cross section of cylinder for different values of the pore volume fraction (ϕ)

Grahic Jump Location
Fig. 13

Radial electrical displacement in the cross section of cylinder for different values of the compressibility coefficient (B)

Grahic Jump Location
Fig. 14

Radial electrical displacement in the cross section of cylinder for different values of the compressibility coefficient (ϕ)

Grahic Jump Location
Fig. 15

Electric potential in the cross section of cylinder for different values of the compressibility coefficient (B)

Grahic Jump Location
Fig. 1

Temperature distribution in the cross section of cylinder

Grahic Jump Location
Fig. 2

Radial displacement in the cross section of cylinder

Grahic Jump Location
Fig. 3

Radial distribution of radial stress

Grahic Jump Location
Fig. 4

Radial distribution of hoop stress

Grahic Jump Location
Fig. 11

Radial displacement in the cross section of cylinder for different values of the compressibility coefficient (B)

Grahic Jump Location
Fig. 16

Electric potential in the cross section of cylinder for different values of the compressibility coefficient (ϕ)

Grahic Jump Location
Fig. 5

Electric potential in the cross section of cylinder

Grahic Jump Location
Fig. 6

Radial electrical displacement in the cross section of cylinder

Grahic Jump Location
Fig. 7

Radial thermal stress in the cross section of cylinder for different values of the pore volume fraction (B)

Grahic Jump Location
Fig. 8

Hoop thermal stress in the cross section of cylinder for different values of the pore volume (B)

Grahic Jump Location
Fig. 9

Radial thermal stress in the cross section of cylinder for different values of the pore volume fraction (ϕ)

Grahic Jump Location
Fig. 10

Hoop thermal stress in the cross section of cylinder for different values of the pore volume (ϕ)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In