0
Research Papers: Materials and Fabrication

Effects of Boiling Water Reactor Medium on the Fatigue Life of Austenitic Stainless Steels

[+] Author and Article Information
Paul Wilhelm

Primary Components and Calculations,
AREVA GmbH,
Henri-Dunant Street 50,
Erlangen 91058, Germany
e-mail: paul.wilhelm@areva.com

Paul Steinmann

Department of Mechanical Engineering,
University of Erlangen-Nuremberg,
Egerland Street 5,
Erlangen 91058, Germany
e-mail: paul.steinmann@ltm.uni-erlangen.de

Jürgen Rudolph

Primary Components and Calculations,
AREVA GmbH,
Henri-Dunant Street 50,
Erlangen 91058, Germany
e-mail: rudolph.juergen@areva.com

1Corresponding author.

Contributed by the Pressure Vessel and Piping Division of ASME for publication in the JOURNAL OF PRESSURE VESSEL TECHNOLOGY. Manuscript received August 19, 2015; final manuscript received January 20, 2016; published online February 22, 2016. Assoc. Editor: Haofeng Chen.

J. Pressure Vessel Technol 138(3), 031406 (Feb 22, 2016) (6 pages) Paper No: PVT-15-1189; doi: 10.1115/1.4032651 History: Received August 19, 2015; Revised January 20, 2016

A statistical model for austenitic stainless steels (SSs) for predicting the effect of boiling water reactor (BWR) environments on fatigue life for a range of temperatures and strain rates is developed based on the analysis of available material data from Europe, U.S., and Japan. Only fatigue data from polished specimens of wrought material tested under strain control were considered. Hollow specimens were not treated in the final calculations. The fatigue-life correction factors were defined as the ratio of life in water at 240 °C (464 °F) (reference conditions) to that in water at service conditions. The model is recommended for predicting fatigue lives that are 102–104 cycles.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chopra, O. K. , and Stevens, G. L. , 2014, “ Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials,” Rev. 1, Argonne National Laboratory, Lemont, IL, Technical Report No. NUREG/CR–6909.
Hasegawa, H. , 2011, “ Nuclear Power Generation Facilities—Environmental Fatigue Evaluation Method for Nuclear Power Plants,” JNES, Minato-ku, Tokyo, Japan, Technical Report No. SS–1005.
Leax, T. R. , 1997, “ Statistical Models of Mean Stress and Water Environment Effects on the Fatigue Behavior of 304 Stainless Steel,” Bechtel Bettis, West Mifflin, PA, Technical Report No. DE–AC11–98PN38206.
Xiao, J. , Qiu, S. Y. , Chen, Y. , and Xu, Q. , 2012, “ Prediction Model for Corrosion Fatigue Lives of Austenitic Stainless Steels in Pressurized Water Reactor Environments,” Corrosion, 68(1), p. 015004. [CrossRef]
Wilhelm, P. , Steinmann, P. , and Rudolph, J. , 2015, “ Effects of Pressurized Water Reactor Medium on the Fatigue Life of Austenitic Stainless Steels,” ASME J. Pressure Vessel Technol., 137(6), p. 061404. [CrossRef]
Millett, P. , 1999, “ PWR Primary Water Chemistry Guidelines,” Electric Power Research Institute, Palo Alto, CA, Technical Report No. TR-105714-V1R4.
Bilanin, W. , 1988, “ BWR Normal Water Chemistry Guidelines: 1986 Revision,” Electric Power Research Institute, Palo Alto, CA, Technical Report No. NP-4946-SR.
Keller, D. L. , 1971, “ Progress on LMFBR Cladding, Structural, and Component Materials Studies During July, 1970–June, 1971,” National Technical Information Service, U.S. Department of Commerce, Springfield, VA, Technical Report No. BMI-1914.
Conway, J. B. , Stentz, R. H. , and Berling, J. T. , 1975, “ Fatigue, Tensile, and Relaxation Behavior of Stainless Steels,” National Technical Information Service, U.S. Department of Commerce, Springfield, VA, Technical Report No. TID-26135.
Hale, D. A. , Wilson, S. A. , Kiss, E. , and Giannuzzi, A. J. , 1977, “ Low Cycle Fatigue Evaluation of Primary Piping Materials in a BWR Environment,” General Electric, San Jose, CA, Technical Report No. GEAP-20244.
Chopra, O. K. , 1999, “ Effects of LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steels,” Argonne National Laboratory, Lemont, IL, Technical Report No. NUREG/CR-5704.
Chopra, O. K. , and Shack, W. J. , 2001, “ Environmental Effects on Fatigue Crack Initiation in Piping and Pressure Vessel Steels,” Argonne National Laboratory, Lemont, IL, Technical Report No. NUREG/CR-6717.
Chopra, O. K. , 2002, “ Mechanism and Estimation of Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments,” Argonne National Laboratory, Lemont, IL, Technical Report No. NUREG/CR-6787.
Chopra, O. K. , and Shack, W. J. , 2003, “ Review of the Margins for ASME Code Fatigue Design Curve—Effects of Surface Roughness and Material Variability,” Argonne National Laboratory, Lemont, IL, Technical Report No. NUREG/CR-6815.
Chopra, O. K. , Alexandreanu, B. , and Shack, W. J. , 2005, “ Effect of Material Heat Treatment on Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments,” Argonne National Laboratory, Lemont, IL, Technical Report No. NUREG/CR-6878.
Solomon, H. D. , Amzallag, C. , DeLair, R. E. , and Vallee, A. J. , 2005, “ 107 Cycle Fatigue Limit of Type 304L SS in Air and PWR Water, at 150 °C and 300 °C,” Minerals, Metals and Materials Society: Environmental Degradation of Materials in Nuclear Power System: Water Reactors, Salt Lake City, UT, pp. 1083–1089.
Solomon, H. D. , Amzallag, C. , DeLair, R. E. , and Vallee, A. J. , 2005, “ Comparison of the Fatigue Life of Type 304L SS as Measured in Load and Strain Controlled Tests,” Minerals, Metals and Materials Society: Environmental Degradation of Materials in Nuclear Power System: Water Reactors, Salt Lake City, UT, pp. 1101–1110.
Kanasaki, H. , Umehara, R. , Mizuta, H. , and Suyama, T. , 1997, “ Fatigue Lives of Stainless Steels in PWR Primary Water,” SMiRT 14, Lyon, France, Paper No. D07/1.
Le Duff, J. A. , Lefrançois, A. , and Vernot, J. P. , 2008, “ Effects of Surface Finish and Loading Conditions on the Low Cycle Fatigue Behavior of Austenitic Stainless Steel in PWR Environment: Comparison of LCF Test Results With NUREG/CR-6909 Life Estimations,” ASME Paper No. PVP2008-61894.
Le Duff, J. A. , Lefrançois, A. , and Vernot, J. P. , 2009, “ Effects of Surface Finish and Loading Conditions on the Low Cycle Fatigue Behavior of Austenitic Stainless Steel in PWR Environment for Various Strain Amplitude Levels,” ASME Paper No. PVP2009-78129.
Le Duff, J. A. , Lefrançois, A. , Vernot, J. P. , and Bossu, D. , 2010, “ Effect of Loading Signal Shape and of Surface Finish on the Low Cycle Fatigue Behavior of 304L Stainless Steel in PWR Environment,” ASME Paper No. PVP2010-26027.
Baglion, L. D. , 2011, “ Comportement et Endommagement en Fatigue Oligocyclique d'un Acier Inoxydable Austénitique 304L en Fonction de l'environnement (vide, air, eau primaire REP) à 300 °C [Low Cycle Fatigue Behavior and Damaging Effects of Austenitic Stainless Steel Type 304L as a Function of Environment (Vacuum, Air, Primary Water of PWR) at 300 °C],” Ph.D. thesis, Institut Pprime, Université de Poitiers, Poitiers, France (in French).
De Baglion, L. , Mendez, J. , Le Duff, J. A. , and Lefrançois, A. , 2012, “ Influence of PWR Primary Water on LCF Behavior of Type 304L Austenitic Stainless Steel at 300 °C: Comparison With Results Obtained in Vacuum or in Air,” ASME Paper No. PVP2012-78767.
Huin, N. , 2013, “ Environmental Effect on Cracking of a 304L Austenitic Stainless Steel in PWR Primary Environment Under Cyclic Loading,” Ph.D. thesis, Institut Pprime, Université de Poitiers, Poitiers, France.
Wang, Y. , and Stumpfrock, L. , 2007, “ Numerische Bewertung der Auswirkung von Ratcheting auf das Verformungs- und Versagensverhalten von Bauteilen [Numerical Valuation of Ratcheting Effects on the Deformation and Failure Behaviour of Components],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMWi 1501285 (in German).
Weißenberg, T. , 2007, “ Zentrale Untersuchung und Auswertung von Herstellungsfehlern und Betriebsschäden im Hinblick auf druckführende Anlagenteile von Kernkraftwerken. Arbeitspaket 3.1: Einfluss des Reaktorkühlmediums auf das Ermüdungsverhalten austenitischer CrNi-Stähle [Work Package 3.1: Investigation of the Influence of the Reactor Coolant on the Fatigue Behaviour of Austenitic Stainless Steels],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMU SR 2501 (in German).
Reicherter, B. , Schuler, X. , and Herter, K.-H. , 2009, “ Nachweis der Ermüdungsfestigkeit bei Kerntechnischen Komponenten aus Ferritischen und Austenitischen Werkstoffen [Proof of Fatigue Strength of Ferritic and Austenitic Nuclear Components],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMWi 1501296 (in German).
Roth, A. , 2011, “ News From Hold-Time-Effects in Fatigue,” Materials Testing Institute (MPA) Workshop, University of Stuttgart, Stuttgart, Germany.
Weißenberg, T. , 2011, “ Zentrale Untersuchung und Auswertung von Herstellungsfehlern und Betriebsschäden im Hinblick auf druckführende Anlagenteile von Kernkraftwerken. Arbeitspaket 3: Korrosionsuntersuchungen. Teilbericht 3.1: Untersuchung des Einflusses von Reaktorkühlmedium auf das Ermüdungsverhalten austenitischer CrNi-Stähle [Work Package 3.1: Investigation of the Influence of the Reactor Coolant on the Fatigue Behavior of Austenitic Stainless Steels],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMU SR 08 01312 (in German).
Soppa, E. A. , and Kohler, C. , 2011, “ Mikromechanische und Atomistische Modellierung der Anrissbildung bei Ermüdungsbeanspruchten Stählen [Micromechanical and Atomistic Modelling of Crack Initiation and Crack Development in Fatigued Steels],” Materials Testing Institute, University of Stuttgart, Stuttgart, Germany, Technical Report No. BMWi 1501353 (in German).
Fesich, T. M. , Herter, K.-H. , and Schuler, X. , 2012, “ Sicherheitsbewertung Kerntechnischer Komponenten bei Komplexer, Mehrachsiger Schwingbeanspruchung [Safety Assessment of Reactor Components Under Complex Multiaxial Cyclic Loading],” Materials Testing Institute, University of Stuttgart, Germany, Technical Report No. BMWi 1501392 (in German).
Bauerbach, K. , Beier, H. , Schlitzer, T. , Fischaleck, M. , Scholz, A. , Willuweit, A. , Rudolph, J. , and Vormwald, M. , 2013, “ Thermische Wechselbeanspruchung. Teilprojekt: Numerische Simulation und Experimentelle Charakterisierung des Ermüdungsrisswachstums unter Thermozyklischer Beanspruchung [Thermal Alternating Loading. Subproject: Simulation and Characterization of the Material State of Components Subjected to Thermal Cyclic Loading Conditions],” Department of Mechanics of Materials, Technical University of Darmstadt, Darmstadt, Germany, Technical Report No. BMBF 02NUK009D (in German).
Schuler, X. , Herter, K.-H. , and Rudolph, J. , 2013, “ Derivation of Design Fatigue Curves for Austenitic Stainless Steel Grades 1.4541 and 1.4550 Within the German Nuclear Safety Standard KTA 3201.2,” ASME Paper No. PVP2013-97138.
Solin, J. P. , 2006, “ Fatigue of Stabilized SS and 316 NG Alloy in PWR Environment,” ASME Paper No. PVP2006-93833.
Solin, J. P. , Reese, S. , and Mayinger, W. , 2011, “ Long Life Fatigue Performance of Stainless Steel,” ASME Paper No. PVP2011-57942.
Solin, J. P. , Reese, S. , and Mayinger, W. , 2012, “ Fatigue Performance of Stainless Steel in NPP Service Conditions,” ASME Paper No. PVP2012-78721.
Wilhelm, P. , Steinmann, P. , and Rudolph, J. , 2014, “ Discussion of Fatigue Data for Austenitic Stainless Steels,” ASME Paper No. PVP2014-28066.
Bastenaire, F. A. , 1971, “ New Method for the Statistical Evaluation of Constant Stress Amplitude Fatigue-Test Result,” Symposium of Probabilistic Aspects of Fatigue, 74th ASTM Annual Meeting, Atlantic City, NJ, June 27–July 2, Paper No. ASTM STP511.
Keisler, J. M. , Chopra, O. K. , and Shack, W. J. , 1996, “ Statistical Models for Estimating Fatigue Strain-Life Behavior of Pressure Boundary Materials in Light Water Reactor Environments,” Nucl. Eng. Des., 167(2), pp. 129–154. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

PWR model: effect of temperature

Grahic Jump Location
Fig. 2

Dependence of tensile strain rate on fatigue life

Grahic Jump Location
Fig. 1

Reference curve for BWR medium environment

Grahic Jump Location
Fig. 5

Predicted strain amplitude versus fatigue life

Grahic Jump Location
Fig. 6

Comparison of prediction models: effect of tensile strain rate

Grahic Jump Location
Fig. 4

Experimental and predicted values of fatigue lives

Grahic Jump Location
Fig. 7

Comparison of prediction models: effect of temperature

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In