Linearized buckling analysis of functionally graded shells of revolution subjected to displacement-dependent pressure, which remains normal to the shell's middle surface throughout the deformation process, is described in this work. Material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and a metal. The governing equations are derived based on the first-order shear deformation theory, which accounts for through the thickness shear flexibility with Sanders type of kinematic nonlinearity. Displacements and rotations in the shell's middle surface are approximated by combining polynomial functions in the meridian direction and truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, also known as the pressure stiffness matrix, which accounts for the variation of load direction, is derived for each strip and after assembling resulted in the global load stiffness matrix of the shell, which may be unsymmetric. The load stiffness matrix can be divided into two unsymmetric parts (i.e., load nonuniformity and unconstrained boundary effects) and a symmetric part. The main part of this research is to quantify the effects of these unsymmetries on the follower action of lateral pressure. A detailed numerical study is carried out to assess the influence of various parameters such as power law index of functionally graded material (FGM) and shell geometry interaction with load distribution, and shell boundary conditions on the follower buckling pressure reduction factor. The results indicate that, when applied individually, unconstrained boundary effect and longitudinal nonuniformity of lateral pressure have little effect on the follower buckling reduction factor, but when combined with each other and with circumferentially loading nonuniformity, intensify this effect.