0
Research Papers: Materials and Fabrication

Interaction Between Circumferential Lamb Waves and Lamination in the Midplane of a Metallic Pipe

[+] Author and Article Information
Ziming Li

College of Mechanical Engineering and
Applied Electronics Technology,
Beijing University of Technology,
Beijing 100124, China
e-mail: b201301lzm@emails.bjut.edu.cn

Cunfu He

College of Mechanical Engineering and
Applied Electronics Technology,
Beijing University of Technology,
Beijing 100124, China
e-mail: hecunfu@bjut.edu.cn

Zenghua Liu

College of Mechanical Engineering and
Applied Electronics Technology,
Beijing University of Technology,
Beijing 100124, China
e-mail: liuzenghua@bjut.edu.cn

Yan Lu

College of Mechanical Engineering and
Applied Electronics Technology,
Beijing University of Technology,
Beijing 100124, China
e-mail: lvyan@bjut.edu.cn

Bin Wu

College of Mechanical Engineering and
Applied Electronics Technology,
Beijing University of Technology,
Beijing 100124, China
e-mail: wb@bjut.edu.cn

1Corresponding author.

Contributed by the Pressure Vessel and Piping Division of ASME for publication in the JOURNAL OF PRESSURE VESSEL TECHNOLOGY. Manuscript received February 22, 2017; final manuscript received October 17, 2017; published online December 7, 2017. Assoc. Editor: Hardayal S. Mehta.

J. Pressure Vessel Technol 140(1), 011406 (Dec 07, 2017) (15 pages) Paper No: PVT-17-1040; doi: 10.1115/1.4038309 History: Received February 22, 2017; Revised October 17, 2017

Lamination is one of common defects in the manufacturing process of seamless metallic pipes. In this paper, the interaction between the circumferential Lamb waves and lamination in the midplane of an aluminum pipe is studied. The used circumferential Lamb waves are CL0 and CL1 modes generated with a finite element method code. Lamination along the circumferential direction is established by the demerging-node method. Numerical results of arrival time are compared with theoretical results in order to verify the accuracy of the excitation ways. The interaction between circumferential Lamb waves and lamination in a damaged full circular pipe is analyzed by composing the received waveforms of the corresponding receivers when CL0 and CL1 modes are excited at different excitation positions: the inner subpipe, the outer subpipe, and the main pipe. The composed waveforms fit well with the original waveforms. When CL0/CL1 mode reaches the entrance and exit of a lamination, it generates new mode and undergoes multiple reverberations, diffraction, and mode conversion between the two ends of the lamination. Based on the detailed analysis of the waveform in detail, some phenomena, which are different from those in a plate, are observed.

Copyright © 2018 by ASME
Topics: Waves , Pipes , Lamination
Your Session has timed out. Please sign back in to continue.

References

Cosham, A. , and Kirkwood, M. , 2000, “ Best Practice in Pipeline Defect Assessment,” International Pipeline Conference (IPC), Calgary, AB, Canada, Oct. 1–5, pp. 1–11.
Cosham, A. , Hopkins, P. , and Macdonald, K. A. , 2007, “ Best Practice for the Assessment of Defects in Pipelines—Corrosion,” Eng. Fail. Anal., 14(7), pp. 1245–1265. [CrossRef]
Hayashi, C. , and Yamakawa, T. , 1997, “ Influences of Feed and Cross Angle on Inside Bore and Lamination Defects in Rotary Piercing for Materials With Poor Hot Workability,” ISIJ Int., 37(2), pp. 153–160. [CrossRef]
Fazzini, P. G. , Cisilino, A. P. , and Otegui, J. L. , 2005, “ Experimental Validation of the Influence of Lamination Defects in Electrical Resistance Seam Welded Pipelines,” Int. J. Pressure Vessels Piping, 82(12), pp. 896–904. [CrossRef]
Valle, C. , Niethammer, M. , Qu, J. , and Jacobs, L. J. , 2001, “ Crack Characterization Using Guided Circumferential Waves,” J. Acoust. Soc. Am., 110(3), pp. 1282–1290. [CrossRef] [PubMed]
Shivaraj, K. , Balasubramaniam, K. , Krishnamurthy, C. V. , and Wadhwan, R. , 2008, “ Ultrasonic Circumferential Guided Wave for Pitting-Type Corrosion Imaging at Inaccessible Pipe-Support Locations,” ASME J. Press. Vessel Technol., 130(2), p. 021502. [CrossRef]
Satyarnarayan, L. , Chandrasekaran, J. , Maxfield, B. , and Balasubramaniam, K. , 2008, “ Circumferential Higher Order Guided Wave Modes for the Detection and Sizing of Cracks and Pinholes in Pipe Support Regions,” NDTE Int., 41(1), pp. 32–43. [CrossRef]
Zhao, Y. , Shen, Z. H. , Lu, J. , Ni, X. W. , Wang, Z. X. , and Cui, Y. P. , 2012, “ Simulation of Differential Circumferential Wave Induced by a Laser Pulse in Hollow Cylinder With an Inner Surface Defect,” Eur. Phys. J. Appl. Phys., 58(2), p. 20503. [CrossRef]
Liu, Y. , Li, Z. , and Gong, K. , 2012, “ Detection of a Radial Crack in Annular Structures Using Guided Circumferential Waves and Continuous Wavelet Transform,” Mech. Syst. Signal Process., 30(7), pp. 157–167. [CrossRef]
Liu, Z. , Xu, Q. , Gong, Y. , He, C. , and Wu, B. , 2014, “ A New Multichannel Time Reversal Focusing Method for Circumferential Lamb Waves and Its Applications for Defect Detection in Thick-Walled Pipe With Large-Diameter,” Ultrasonics, 54(7), pp. 1967–1976. [CrossRef] [PubMed]
Urabe, K. , Takatsubo, J. , Toyama, N. , Yamamoto, T. , and Tsuda, H. , 2013, “ Flaw Inspection of Aluminum Pipes by Non-Contact Visualization of Circumferential Guided Waves Using Laser Ultrasound Generation and an Air-Coupled Sensor,” Third International Symposium on Laser Ultrasonics and Advanced Sensing, Yokohama, Japan, June 25–28, Paper No. UNSP 012009.
Wang, S. , Huang, S. , Zhao, W. , and Zheng, W. , 2015, “ 3D Modeling of Circumferential SH Guided Waves in Pipeline for Axial Cracking Detection in ILI Tools,” Ultrasonics, 56, pp. 325–331. [CrossRef] [PubMed]
Gachagan, A. , McNab, A. , and Reynolds, P. , 2004, “ Analysis of Ultrasonic Wave Propagation in Metallic Pipe Structures Using Finite Element Modelling Techniques,” IEEE Ultrasonics Symposium, Montreal, QC, Canada, Aug. 23–27, pp. 938–941.
Nishino, H. , Yokoyama, R. , Ogura, K. , Kondo, H. , and Yoshida, K. , 2008, “ Tone-Burst Generation of Circumferential Guided Waves by a Bulk Shear Wave Sensor and Their Wide-Range Time-Frequency Analyses,” Jpn. J. Appl. Phys., 47(5), pp. 3885–3893. [CrossRef]
Liu, G. , and Qu, J. , 1998, “ Guided Circumferential Waves in a Circular Annulus,” ASME J. Appl. Mech., 65(2), pp. 424–430. [CrossRef]
Liu, G. , and Qu, J. , 1998, “ Transient Wave Propagation in a Circular Annulus Subjected to Transient Excitation on Its Outer Surface,” J. Acoust. Soc. Am., 104(3), pp. 1210–1220. [CrossRef]
Gao, W. , Glorieux, C. , and Thoen, J. , 2002, “ Study of Circumferential Waves and Their Interaction With Defects on Cylindrical Shells Using Line-Source Laser Ultrasonics,” J. Appl. Phys., 91(9), pp. 6114–6119. [CrossRef]
Prada, C. , and Fink, M. , 1998, “ Separation of Interfering Acoustic Scattered Signals Using the Invariants of the Time-Reversal Operator. Application to Lamb Waves Characterization,” J. Acoust. Soc. Am., 104(2), pp. 801–807. [CrossRef]
Maze, G. , Léon, F. , Ripoche, J. , and Uberall, H. , 1999, “ Repulsion Phenomena in the Phase-Velocity Dispersion Curves of Circumferential Waves on Elastic Cylindrical Shells,” J. Acoust. Soc. Am., 105(3), pp. 1695–1701. [CrossRef]
Nishino, H. , Asano, T. , Taniguchi, Y. , Yoshida, K. , Ogawa, H. , Takahashi, M. , and Ogura, Y. , 2011, “ Precise Measurement of Pipe Wall Thickness in Noncontact Manner Using a Circumferential Lamb Wave Generated and Detected by a Pair of Air-Coupled Transducers,” Jpn. J. Appl. Phys., 50(7S), p. 07HC10. [CrossRef]
Wang, S. , Huang, S. , and Zhao, W. , 2009, “ Plate and Pipe Circumferential Lamb Wave Dispersion and Wave Structure Characteristics,” J. Tsinghua Univ.(Sci. Tech.), 49(7), pp. 925–928.
Alleyne, D. , and Cawley, P. , 1991, “ A Two-Dimensional Fourier Transform Method for the Measurement Propagating Multimode Signals,” J. Acoust. Soc. Am., 89(3), pp. 1159–1168. [CrossRef]
Castaings, M. , and Cawley, P. , 1996, “ The Generation, Propagation and Detection of Lamb Waves in Plates Using Air-Coupled Ultrasonic Transducers,” J. Acoust. Soc. Am., 100(5), pp. 3070–3077. [CrossRef]
Liu, Z. , Yu, H. , He, C. , and Wu, B. , 2013, “ Delamination Damage Detection of Laminated Composite Beams Using Air-Coupled Ultrasonic Transducers,” Sci. China-Phys. Mech. Astron., 56(7), pp. 1269–1279. [CrossRef]
Ramadas, C. , Balasubramaniam, K. , Joshi, M. , and Krishnamurthy, C. V. , 2010, “ Interaction of Guided Lamb Waves With an Asymmetrically Located Delamination in a Laminated Composite Plate,” Smart Mater. Struct., 19(6), p. 065009. [CrossRef]
Ramadas, C. , Hood, A. , Khan, I. , Balasubramaniam, K. , and Joshi, M. , 2013, “ Transmission and Reflection of the Fundamental Lamb Modes in a Metallic Plate With a Semi-Infinite Horizontal Crack,” Ultrasonics, 53(3), pp. 773–781. [CrossRef] [PubMed]
Ramadas, C. , 2013, “ Interaction Between the Fundamental Lamb Modes and the Front Edge of a Crack in a Metallic Plate,” IEEE T. Ultrason. Ferr, 60(6), pp. 1152–1164. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Wave propagating in a pipe with inner radius Ra and outer radius Rb

Grahic Jump Location
Fig. 2

Dispersion curves of (a) phase velocity and (b) group velocity in an aluminum pipe with the inner radius Ra = 60 mm and outer radius Rb = 63 mm

Grahic Jump Location
Fig. 3

Wave structures of (a) CL0 mode and (b) CL1 mode at 400 kHz in an aluminum pipe with Ra = 60 mm, Rb = 63 mm

Grahic Jump Location
Fig. 4

Excitation methods of C-Lamb waves in a pipe: (a) CL0 mode and (b) CL1 mode

Grahic Jump Location
Fig. 5

Schematic diagram of excitation C-Lamb waves in an undamaged pipe

Grahic Jump Location
Fig. 6

(a) Radial and tangential displacements and (b) Normalized CWT to radial displacement of points A and B for opposite tangent loading directions

Grahic Jump Location
Fig. 7

(a) Radial and tangential displacements and (b) Normalized CWT to tangential displacement of points A and B for same tangent loading directions

Grahic Jump Location
Fig. 8

Schematic diagram of demerging-node method

Grahic Jump Location
Fig. 9

Three phenomena of exciting C-Lamb waves at different positions: (a) inner subpipe, (b) outer subpipe, and (c) main pipe

Grahic Jump Location
Fig. 10

CL0 mode excited in the inner subpipe

Grahic Jump Location
Fig. 11

CL0 mode excited in the outer subpipe

Grahic Jump Location
Fig. 12

CL0 mode excited in the main pipe

Grahic Jump Location
Fig. 13

CL1 mode excited in the inner subpipe

Grahic Jump Location
Fig. 14

CL1 mode excited in the outer subpipe

Grahic Jump Location
Fig. 15

CL1 mode excited in the main pipe

Grahic Jump Location
Fig. 16

Schematic diagram of midplane lamination in a circular pipe

Grahic Jump Location
Fig. 17

Radial displacement and tangential displacement of R1 when CL0 mode is excited in a pipe

Grahic Jump Location
Fig. 18

Radial displacement and tangential displacement of (a) R2, (b) R3, and (c) R4 when CL0 mode is excited in a pipe

Grahic Jump Location
Fig. 19

Radial displacement and tangential displacement of R1 when CL1 mode is excited in a pipe

Grahic Jump Location
Fig. 20

Radial displacement and tangential displacement of (a) R2, (b) R3, and (c) R4 when CL1 mode is excited in a pipe

Grahic Jump Location
Fig. 21

Propagation of CL0 and CL1 modes in a damaged pipe with a lamination

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In