Simulation of Partial Autofrettage by Thermal Loads

[+] Author and Article Information
M. A. Hussain, S. L. Pu, J. D. Vasilakis, P. O’Hara

US Army Armament Research and Development Command, Benet Weapons Laboratory, Watervliet Arsenal, Watervliet, N.Y. 12189

J. Pressure Vessel Technol 102(3), 314-318 (Aug 01, 1980) (5 pages) doi:10.1115/1.3263337 History: Received April 29, 1980; Online November 05, 2009


The effect of favorable residual stresses of an autofrettaged tube is well known [1]. In many instances there is redistribution of these stresses due to changes of geometrical configurations such as the presence of keyways, riflings, cracks, etc. The problem, in general, can be studied by discretization carrried out either by finite elements or by finite differences; however, it is usually not possible to incorporate the redistributed residual stress patterns due to the presence of such geometrical changes. This difficulty is overcome by simulation of residual stresses by certain active loadings. The simulation by dislocation and equivalent thermal loading for a fully autofrettaged tube is well known. In this paper we extend the thermal loading to simulate a partially autofrettaged case. Thermal stresses due to the simulated thermal loading computed from finite elements (NASTRAN) and finite differences are in excellent agreement with residual stresses for various degrees of overstrain. The simplicity of the method to incorporate the redistribution of residual stress due to the presence of geometrical discontinuities is illustrated by a finite element (APES) computation of stress intensity factors at an OD crack tip in a partially autofrettaged, thick-walled cylinder.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In