Plastic Work Interaction Damage Rule Applied to Narrow-Band Gaussian Random Stress Situations

[+] Author and Article Information
R. G. Lambert

General Electric Company, Aerospace Electronic Systems Department, Utica, N.Y. 13503

J. Pressure Vessel Technol 110(1), 88-90 (Feb 01, 1988) (3 pages) doi:10.1115/1.3265573 History: Received September 16, 1987; Online November 05, 2009


Fatigue life estimates that use a structural material’s constant amplitude stress life data values and a linear cumulative damage rule are always nonconservative for stress histories containing numerous subcycles and only a few large-amplitude cycles. Conservative fatigue life estimates were previously achieved by others with a plastic work interaction damage rule using the material’s overstrain fatigue life parameter values. Verification fatigue tests were run on laboratory specimens of 1020 steel using four selected variable amplitude stress wave form profiles. This paper extends the application of the plastic work interaction damage rule to narrowband Gaussian random stress situations. The derived stress life mathematical expression is of a power law form. The predicted fatigue life is more accurate than that predicted using a conventional linear damage rule.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In