Minimum Stress Design of Nozzles in Pressure Vessel Heads

[+] Author and Article Information
Y.-J. Chao

Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208

J. Pressure Vessel Technol 110(4), 460-463 (Nov 01, 1988) (4 pages) doi:10.1115/1.3265630 History: Received July 27, 1988; Online November 05, 2009


In the early design stage of pressure vessels the configuration of the piping systems is not yet established; hence forces transmitted by the piping systems to the nozzles in the pressure vessels cannot be determined. This often leads to the design of nozzles in pressure vessels guided by consideration of pressure loadings such as the area-replacement method. However, it is true that in many cases the stresses due to external loads can be more critical than those due to the internal pressure. Therefore, engineers often redesign the piping system several times by adding more pipe bends or special restraints for a hot piping system to reduce the reactions at a previously designed nozzle so that the resulting stresses at the nozzle are within the acceptable limit. This paper introduces a rational mechanism whereby the stresses due to the unforeseen external loads can be minimized in the early design stage of the nozzle. An appropriate analysis is discussed which is based on the classical thin shell theory. Analyses using this method allow one to obtain the minimum stresses at a nozzle in a pressure vessel head or a spherical vessel for moment and thrust loadings.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In