Remaining Life of High-Energy Piping Systems Using Equivalent Stress

[+] Author and Article Information
M. J. Cohn

Aptech Engineering Services, Inc., Sunnyvale, CA 94089

J. Pressure Vessel Technol 112(3), 260-265 (Aug 01, 1990) (6 pages) doi:10.1115/1.2928623 History: Received April 01, 1988; Revised March 20, 1990; Online June 17, 2008


Fossil power plant high-energy piping systems operated at high temperatures are subject to creep damage, which is a time-dependent phenomenon. Traditional guidelines, such as the American Society of Mechanical Engineers (ASME) B31.1 Power Piping Code, were developed for plants having design lives in the 25–30 yr regime. Since many of these systems are being operated beyond 200,000 hr, it is important to reconsider the methodology of creep damage analysis to assure reliable long-term operation. Seven high-energy piping systems were evaluated in this study. The analysis of a minimum piping system life due to creep considered two approaches. The first approach used the traditional ASME B31.1 flexibility analysis guidelines. The second approach considered more detailed multiaxial stress state types of evaluations. The various equivalent stress methods used all six load components from the flexibility analysis. In nearly every case, the equivalent stress methods predicted significantly higher stresses. Consequently, the equivalent stress methodology results in 14 to 97 percent lower time to rupture values as compared to the values predicted using ASME B31.1 stresses.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In