Creep-Fatigue Assessment Methods Using Elastic Analysis Results and Adjustments

[+] Author and Article Information
L. K. Severud

Westinghouse Hanford Company, Richland, WA 99352

J. Pressure Vessel Technol 113(1), 34-40 (Feb 01, 1991) (7 pages) doi:10.1115/1.2928725 History: Received December 06, 1989; Revised May 08, 1990; Online June 17, 2008


The design of mechanical components that operate in elevated temperature environment where creep effects are significant usually requires creep-fatigue assessments. The ASME Code Case N-47 contains rules for these assessments based on both inelastic and elastic stress analysis. Although an inelastic stress analysis generally more accurately predicts effects from creep and plasticity, an elastic analysis is often preferred since it is much simpler and less costly. New creep-fatigue rules for use with elastic analysis results have recently been proposed to enhance the rules’ accuracy and usefulness. This paper describes such new methods and rules for creep-fatigue assessments. Ingredients of the new methods include elastic follow-up, ratcheting, multiaxiality, plasticity, creep, and relaxation considerations and associated adjustment factors. The basis for the adjustments and a comparison of results to those obtained using inelastic analysis are provided. The new methods will provide a wider range of practical application of elastic creep-fatigue rules than permitted by previous code methods in design of components for elevated temperature service.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In