On the Dynamics and Stability of Cylindrical Shells Conveying Inviscid or Viscous Fluid in Internal or Annular Flow

[+] Author and Article Information
A. El Chebair

Department of Engineering, Laval University, Ste.-Foy, Quebec, Canada

A. K. Misra

McGill University, Montreal, Quebec, Canada

J. Pressure Vessel Technol 113(3), 409-417 (Aug 01, 1991) (9 pages) doi:10.1115/1.2928775 History: Received May 30, 1990; Revised March 22, 1991; Online June 17, 2008


This paper investigates theoretically for the first time the dynamical behavior and stability of a simply supported shell located coaxially in a rigid cylindrical conduit. The fluid flow is incompressible and the fluid forces consist of two parts: (i) steady viscous forces which represent the effects of upstream pressurization of the flow; (ii) unsteady forces which could be inviscid or viscous. The inviscid forces were derived by linearized potential flow theory, while the viscous ones were derived by means of the Navier-Stokes equations. Shell motion is described by the modified Flügge’s shell equations. The Fourier transform technique is employed to formulate the problem. First, the system is subjected only to the unsteady inviscid forces. It is found that increasing either the internal or the annular flow velocity induces buckling, followed by coupled mode flutter. When both steady viscous and unsteady inviscid forces are applied, for internal flow, the system becomes stabilized; while for annular flow, the system loses stability at much lower velocities. Second, the system is only subjected to the unsteady viscous forces. Calculations are only performed for the internal flow case. The results are compared to those of inviscid theory. It is found that the effects of unsteady viscous forces on the stability of the system are very close to those of unsteady inviscid forces.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In