Nonlinear Analysis of Transverse Shear Deformable Laminated Composite Cylindrical Shells—Part II: Buckling of Axially Compressed Cross-Ply Circular and Oval Cylinders

[+] Author and Article Information
K. P. Soldatos

Department of Theoretical Mechanics, Nottingham University, Nottingham, U.K.

J. Pressure Vessel Technol 114(1), 110-114 (Feb 01, 1992) (5 pages) doi:10.1115/1.2929000 History: Received February 08, 1988; Revised May 17, 1991; Online June 17, 2008


A linearized transverse shear deformable shell theory presented in a companion paper is confined to consideration with the buckling problem of axially compressed, cross-ply laminated noncircular cylindrical shells. Based on a solution of its governing differential equations, obtained for simply supported shells by means of Galerkin’s method, a study of the buckling problem of axially compressed circular and oval cylindrical shells, of a regular antisymmetric cross-ply laminated arrangement, is presented. Moreover, by comparing the numerical results obtained with corresponding results based on a classical Love-type shell theory, the combined influence of both the transverse shear deformation and the shell eccentricity on the buckling loads of such laminated composite shells is examined.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In