A Simple Estimating Method for Reduction of Welding Residual Stresses in Thick Welded Joint From Stress-Relief Annealing—Part I: Development of the Analytical Method for Relaxation Tests and Its Applicability

[+] Author and Article Information
K. Nakacho, Y. Ueda

Joining and Welding Research Institute, Osaka University, Mihogaoka 11-1, Ibarki, Osaka 567, Japan

J. Pressure Vessel Technol 118(3), 343-350 (Aug 01, 1996) (8 pages) doi:10.1115/1.2842198 History: Received January 27, 1994; Revised December 12, 1995; Online February 11, 2008


Stress-relief annealing (SR treatment) is often applied to relieve welding residual stresses in the fabrication process of pressure vessels, etc. This study aims at development of an efficient method as simple as hand calculation to estimate reduction of residual stresses of very thick welded joint by SR treatment. In this first report, an estimating method is developed for relaxation tests, in uniaxial stress state, at changing and constant temperatures because the stress relaxation phenomenon is very similar to that observed in the SR treatment of a joint. Using the various relations between stress and strains in the relaxation tests, estimating equations are formulated in order to simply calculate the change of the stress. The results obtained by applying the equations are compared with the highly accurate analytical result based on the finite element method. Both results show such a good coincidence that the appropriateness of the adopted method is confirmed. In the next report, this method is extended to SR treatment of a very thick welded joint, of which the stress state and boundary condition are very complex.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In