Fretting Wear Damage of Heat Exchanger Tubes: A Proposed Damage Criterion Based on Tube Vibration Response

[+] Author and Article Information
M. Yetisir, E. McKerrow, M. J. Pettigrew

Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario K0J 1J0, Canada

J. Pressure Vessel Technol 120(3), 297-305 (Aug 01, 1998) (9 pages) doi:10.1115/1.2842061 History: Received January 07, 1998; Revised February 27, 1998; Online February 11, 2008


A simple criterion is proposed to estimate fretting wear damage in heat exchanger tubes with clearance supports. The criterion is based on parameters such as vibration frequency, midspan vibration amplitude, span length, tube mass, and an empirical wear coefficient. It is generally accepted that fretting wear damage is proportional to a parameter called work rate. Work rate is a measure of the dynamic interaction between a vibrating tube and its supports. Due to the complexity of the impact-sliding behavior at the clearance supports, work rate calculations for heat exchanger tubes require specialized nonlinear finite element codes. These codes include contact models for various clearance support geometries. Such nonlinear finite element analyses are complex, expensive and time consuming. The proposed criterion uses the results of linear vibration analysis (i.e., vibration frequency and mid-span vibration amplitude due to turbulence) and does not require a nonlinear analysis. It can be used by nonspecialists for a quick evaluation of the expected work rate, and hence, the fretting wear damage of heat exchanger tubes. The proposed criterion was obtained from an extensive parametric study that was conducted using a nonlinear finite element program. It is shown that, by using the proposed work rate criteria, work rate can be estimated within a factor of two. This result, however, requires further testing with more complicated flow patterns.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In