Fatigue Crack Growth Testing of Sub-Clad Defects

[+] Author and Article Information
D. P. Jones, T. R. Leax

Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, P.O. Box 79, ZAP 34E, West Mifflin, PA 15122-0079

J. Pressure Vessel Technol 121(3), 269-275 (Aug 01, 1999) (7 pages) doi:10.1115/1.2883702 History: Received November 11, 1998; Revised April 14, 1999; Online February 11, 2008


Fatigue crack growth tests were performed on four-point bend specimens with cracklike defects intentionally placed in A302B low-alloy pressure vessel steel clad with 308/309L weld-deposited stainless steel. The defects were placed in the base metal under the cladding by machining a cavity from the side opposite the cladding, electric-discharge machining a very sharp flaw, fatigue precracking the flaw, and then filling up the cavity by a weld repair process. The specimens were stress relieved before fatigue testing. The specimens were fatigue cycled at positive load ratios until the defects broke through to the surface. The specimens were then fractured at liquid nitrogen temperatures to reveal the fracture surfaces. Seven different sub-clad flaw specimens were tested in room temperature air and each test provides a record of cycles to defect breakthrough. Changes in defect size and shape as a function of applied load cycles were obtained by beach-marking the crack at various stages of the load history. The results provide a set of embedded defect data which can be used for qualifying fatigue crack growth analysis procedures such as those in Section XI of the ASME Boiler and Pressure Vessel Code. A comparison between calculated and measured values shows that the ASME B&PV Section XI fatigue crack growth procedures conservatively predict cycles to defect breakthrough for small sub-clad defects.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In