Abstract

Damper seals (such as pocket damper seal (PDS), hole-pattern/honeycomb damper seals) and swirl brakes have been commonly used for many years as a solution for the rotor vibration instability in multiple-stage centrifugal compressor. However, there are few literatures focusing on the application assessment of damper seals and swirl brakes in high-pressure steam turbines. This paper presents a comprehensive assessment and comparison on the rotordynamic characteristics of a staggered labyrinth seal (LABY), a fully partitioned pocket damper seal (FPDS), and a hole-pattern damper seal (HPS), used as the balance piston seal in a 150 MW 3000 rpm multistage single casing steam turbine. The staggered labyrinth seal is an original seal scheme where the steam turbine experienced strong subsynchronous rotordynamic instability, preventing full load operation of the machine. The fully partitioned pocket damper seal and the hole-pattern damper seal were designed (the same sealing clearance, inner diameter and axial length) to increase the rotor net damping and eliminate the subsynchronous vibration. The straight swirl brake device also was implemented at seal entrance as a solution scheme to reduce the swirl velocity and enhance the seal net damping capability at high inlet preswirl condition (inlet preswirl ratio is 0.5). Numerical results of seal rotordynamic force coefficients, cavity pressure, and swirl velocity developments were presented and discussed, using a proposed transient computational fluid dynamics (CFD)-based perturbation method based on the multiple-frequency elliptical-orbit rotor whirling model. Results show that although the HPS seal and the FPDS seal both produce the obviously larger effective damping and the similar lower crossover frequency than the LABY seal, from a rotordynamic view, the FPDS seal scheme with entrance swirl brake is better for the present steam turbine due to the relatively larger effective damping and smaller direct stiffness, as a replacement scheme of the original staggered labyrinth seal, to resolve the subsynchronous vibration instability and allow full load operation of the steam turbine.

References

1.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamic: Phenomena, Modeling and Analysis
,
Wiley
,
New York
, p.
292
.
2.
Vance
,
J. M.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
New York
, pp.
271
278
.
3.
Armstrong
,
J.
, and
Perricone
,
F.
,
1996
, “
Turbine Instabilities Solution Honeycomb Seals
,”
Proceedings of the 25th Turbomachinery Symposium
, Turbomachinery Laboratory, Texas A&M University, College Station, TX, Sept. 17–19, pp.
47
56
.
4.
Childs
,
D. W.
, and
Vance
,
J. M.
,
1997
, “
Annular Seals and the Rotordynamics of Compressors and Turbines
,”
Proceedings of 26th Turbomachinery Symposium
, Houston, TX, Sept. 14–18, pp.
201
220
.https://core.ac.uk/reader/87265440
5.
Zeidan
,
F.
,
Perez
,
R.
, and
Stephenson
,
E.
,
1993
, “
The Use of Honeycomb Seals in Stabilizing Two Centrifugal Compressors
,”
Proceedings of the 22nd Turbomachinery Symposium
, Turbomachinery Laboratory, Texas A&M University, College Station, TX, Sept. 14–16, pp.
3
15
.https://dyrobes.com/wp-content/uploads/2012/12/The-Use-of-Honeycomb-Seals-in-Stabilizing-Two-Centrifugal-Compressors.pdf
6.
Li
,
J.
,
Choudhury
,
P. D.
, and
Kushner
,
F.
,
2003
, “
Evaluation of Centrifugal Compressor Stability Margin and Investigation of Antiswirl Mechanism
,”
32nd Turbomachinery Symposium
, Turbomachinery Laboratory, Texas A&M University, College Station, TX, Sept. 8–11, pp.
49
58
.https://www.semanticscholar.org/paper/Evaluation-Of-Centrifugal-Compressor-Stability-And-Li-Choudhury/7214444aa3649ac5709c996ad8463d1c61e40a82
7.
Vance
,
J.
, and
Schultz
,
R.
,
1993
, “
A New Damper Seal for Turbomachinery
,”
ASME
Paper No. DETC1993-0188.10.1115/DETC1993-0188
8.
Richards
,
R. L.
,
Vance
,
J. M.
, and
Zeidan
,
F. Y.
,
1995
, “
Using a Damper Seal to Eliminate Subsynchronous Vibrations in Three Back-to-Back Compressors
,”
Proceedings of 24th Turbomachinery Symposium
, Turbomachinery Laboratory, Texas A&M University, College Station, TX, pp.
370
376
.https://www.bearingsplus.com/content/dam/dpc/bearingsplus/bpi_downloads/technical-papers/Damper%20Seal%20to%20Eliminate%20Subsynch%20Vibrations_tms_vol2407_1995.pdf
9.
Vance
,
J. M.
, and
Li
,
J.
,
1996
, “
Test Results of a New Damper Seal for Vibration Reduction in Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
843
846
.10.1115/1.2817004
10.
Ransom
,
D. L.
,
1997
, “
Identification of Dynamic Force Coefficients of a Labyrinth and Gas Damper Seal Using Impact Load Excitations
,” Ph.D. dissertation,
Texas A&M University
,
College Station, TX
.
11.
Laos
,
H. E.
,
1999
, “
Rotordynamic Effect of Pocket Damper Seals
,”
Ph.D. dissertation
,
Texas A&M University
,
College Station, TX
.https://www.proquest.com/openview/eaa0941b440da9bba86e28bd468f08de/1?pqorigsite=gscholar&cbl=18750&diss=y
12.
Li
,
J.
,
Aguilar
,
R.
,
Andrés
,
L. S.
, and
Vance
,
J. M.
,
2000
, “
Dynamic Force Coefficients of a Multiple Blade, Multiple-Pocket Gas Damper Seal: Test Results and Predictions
,”
ASME J. Tribol.
,
122
(
1
), pp.
317
322
.10.1115/1.555360
13.
Ertas
,
B. H.
,
2005
, “
Rotordynamic Force Coefficients of Pocket Damper Seals
,” Ph.D. dissertation, Mechanical Engineering, Texas A&M University, College Station, TX.
14.
Ertas
,
B. H.
,
Gamal
,
A. M.
, and
Vance
,
J. M.
,
2006
, “
Rotordynamic Force Coefficients of Pocket Damper Seals
,”
ASME J. Turbomach.
,
128
(
4
), pp.
725
737
.10.1115/1.2221327
15.
Ertas
,
B. H.
, and
Vance
,
J. M.
,
2007
, “
Rotordynamic Force Coefficients for a New Pocket Damper Seals
,”
ASME J. Tribol.
,
129
, pp.
365
374
.10.1115/1.2464138
16.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.10.1115/1.4004537
17.
Delgado
,
A.
,
San Andres
,
L.
,
Yang
,
J.
, and
Thiele
,
J.
,
2023
, “
Experimental Force Coefficients for a Fully-Partitioned Pocket Damper Seal and Comparison to Other Two Seal Types
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051019
.10.1115/1.4056347
18.
Vannini
,
G.
,
Cioncolini
,
S.
,
Vescovo
,
G. D.
, and
Rovini
,
M.
,
2014
, “
Labyrinth Seal and Pocket Damper Seal High Pressure Rotordynamic Test Data
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022501
.10.1115/1.4025360
19.
Vannini
,
G.
,
Bertoneri
,
M.
,
Nielsen
,
K. K.
,
Iudiciani
,
P.
, and
Stronach
,
R.
,
2016
, “
Experimental Results and Computational Fluid Dynamics Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052501
.10.1115/1.4031530
20.
Yang
,
J.
,
San Andres
,
L.
, and
Lu
,
X.
,
2019
, “
Leakage and Dynamic Force Coefficients of a Pocket Damper Seal Operating Under a Wet Gas Condition: Tests Versus Predictions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111001
.10.1115/1.4044307
21.
Childs
,
D. W.
, and
Kim
,
C.-H.
,
1985
, “
Analysis and Testing of Turbulent Annular Seals With Different, Directionally Homogeneous Surface Roughness Treatments for Rotor and Stator Elements
,”
ASME J. Tribol.
,
107
(
3
), pp.
296
305
.10.1115/1.3261054
22.
Childs
,
D. W.
, and
Kim
,
C.-H.
,
1986
, “
Test Results for Round-Hole-Pattern Damper Seals: Optimum Configurations and Dimensions for Maximum Net Damping
,”
ASME J. Tribol.
,
108
(
4
), pp.
605
609
.10.1115/1.3261277
23.
Childs
,
D. W.
,
Nolan
,
S. A.
, and
Kilgore
,
J. J.
,
1990
, “
Additional Test Results for Round-Hole-Pattern Damper Seals: Leakage, Friction Factors, and Rotordynamic Force Coefficients
,”
ASME J. Tribol.
,
112
(
2
), pp.
365
371
.10.1115/1.2920266
24.
Vannarsdall
,
M.
, and
Childs
,
D. W.
,
2014
, “
Static and Rotordynamic Characteristics for a New Hole Pattern Annular Gas Seal Design Incorporating Large Diameter Holes
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022507
.10.1115/1.4025536
25.
Childs
,
D. W.
,
Arthur
,
S.
, and
Mehta
,
N. J.
,
2014
, “
The Impact of Hole Depth on the Rotordynamic and Leakage Characteristics of Hole-Pattern-Stator Gas Annular Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
042501
.10.1115/1.4025888
26.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals-Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
27.
Brown
,
P.
, and
Childs
,
D.
,
2012
, “
Measurement Versus Predictions of Rotordynamic Coefficients of a Hole-Pattern Gas Seal With Negative Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122503
.10.1115/1.4007331
28.
Childs
,
D.
, and
Kleynhans
,
G.
,
1992
, “
Experimental Rotordynamic and Leakage Results for Short (L/D=1/6) Honeycomb and Smooth Annular Pressure Seals
,” IMechE Proceedings of the Fifth International Conference on Vibrations in Rotating Machinery, Bath, UK, Sept. 7–10, pp.
305
309
.
29.
Shin
,
Y. S.
,
2005
, “
Modifications to a Two-Control-Volume, Frequency Dependent, Transfer-Function Analysis of Hole-Pattern Gas Annular Seals
,” M.S. thesis,
Mechanical Engineering Department, Texas A&M University
,
College Station, TX
.
30.
Cangioli
,
F.
,
Vannini
,
G.
, and
Chirathadam
,
T.
,
2020
, “
A Novel Bulk-Flow Model for Pocket Damper Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011012
.10.1115/1.4045000
31.
Patrick
,
J. M.
,
Alexandrina
,
U.
,
Houston
,
G. W.
, and
Paul
,
E. A.
,
2012
, “
A Computational Fluid Dynamics/Bulk-Flow Hybrid Method for Determining Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Tribol.
,
134
(
2
), p.
022202
.10.1115/1.4006407
32.
Patrick
,
J. M.
,
Alexandrina
,
U.
, and
Houston
,
G. W.
,
2015
, “
A Numerical Study on the Influence of Hole Depth on the Static and Dynamic Performance of Hole-Pattern Seals
,”
ASME J. Tribol.
,
137
(
1
), p.
011702
.10.1115/1.4028604
33.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.10.1115/1.2647531
34.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.10.1115/1.4003403
35.
Nielsen
,
K. K.
,
Janck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122505
.10.1115/1.4007344
36.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.10.1115/1.4023143
37.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z. H.
,
2016
, “
Comparison of Rotordynamic Characteristics Predictions for Annular Gas Seals Using the Transient Computational Fluid Dynamic Method Based on Different Single-Frequency and Multi-Frequency Rotor Whirling Models
,”
ASME J. Tribol.
,
138
(
1
), p.
011701
.10.1115/1.4030807
38.
Yang
,
J.
,
Andres
,
L. S.
, and
Lu
,
X.
,
2021
, “
On the Leakage and Dynamic Force Coefficients of a Novel Stepped Shaft Pocket Damper Seal: Experimental and Numerical Verification
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031002
.10.1115/1.4048459
39.
Thorat
,
M. R.
, and
Hardin
,
J. R.
,
2019
, “
Rotordynamic Characteristics Prediction for Hole-Pattern Seals Using CFD
,”
ASME
Paper No. GT2019-90846.10.1115/GT2019-90846
40.
Li
,
Z.
,
Fang
,
Z.
,
Li
,
J.
, and
Feng
,
Z. H.
,
2020
, “
Influence of Annular/Pocket Groove on the Static and Rotordynamic Characteristics of Hole-Pattern Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
6
), p.
061013
.10.1115/1.4047183
41.
Li
,
Z.
,
Li
,
Z. H.
,
Li
,
J.
, and
Feng
,
Z. H.
,
2021
, “
Leakage and Rotordynamic Characteristics for Three Types of Annular Gas Seals Operating in Supercritical CO2 Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101002
.10.1115/1.4051104
42.
Li
,
Z.
,
Li
,
Z. H.
,
Li
,
J.
, and
Feng
,
Z. H.
,
2022
, “
Static and Rotordynamic Characteristics for Two Types of Novel Hole-Pattern Seals Operating in Supercritical CO2 Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071006
.10.1115/1.4054374
43.
ANSYS
,
2006
,
ANSYS CFX-Solver Theory Guide. Release 11.0
,
ANSYS
,
Canonsburg, PA
.
You do not currently have access to this content.