Abstract

Pressure gain combustors (PGC) exploit either their isochoric or detonative combustion increasing the theoretical thermal efficiency of a gas turbine cycle. On this basis, a constant-volume combustor (CVC) is developed operating with rotary valves while the chamber is fed with mixture of air and liquid iso-octane. This work describes the numerical design of a new exhaust section after the CVC. First, the design parametrization of the transition duct and the resulting design of experiments (DOE) of 81 samples are introduced. Every case is numerically tested and the election of the best sample is based on the pressure losses and the oscillations characterization. In the last part, the LS89-VKI vane is added at the aft part of the best transition duct and the ensemble exhaust system is analyzed with the help of transient CFD analysis. Every component is evaluated in terms of pressure losses and oscillations, while the operation of the vane is investigated in details. The results of the stator's performance are discussed and compared with steady experimental data. During a CVC period, the cycle average outlet flow angle remains close to the outlet metal angle denoting promising results for the future numerical analysis of the subsequent rotor.

References

1.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
, “
Thermodynamic Cycle Analysis of Pulse Detonation Engines
,”
J. Propul. Power
,
18
(
1
), pp.
68
76
.10.2514/2.5899
2.
Nordeen
,
C. A.
,
2013
, “
Concepts and Definitions: Efficiency of Detonation
,” Ph.D. thesis, Thermodynamic a Rotating Detonation Engine,
University of Connecticut
, Storrs, CT, pp.
10
15
.
3.
Stathopoulos
,
P.
,
Vinkeloe
,
J.
, and
Paschereit
,
C. O.
,
2015
, “
Thermodynamic Evaluation of Constant Volume Combustion for Gas Turbine Power Cycles
,”
Proceedings of the 11th International Gas Turbine Congress
, Tokyo, Japan, Nov. 15–20 pp.
15
20
.https://www.researchgate.net/publication/294086371_Thermodynamic_evaluation_of_constant_volume_combustion_for_gas_turbine_power_cycles
4.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.10.1016/j.apenergy.2017.03.045
5.
Ciccarelli
,
G.
, and
Dorofeev
,
S.
,
2008
, “
Flame Acceleration and Transition to Detonation in Ducts
,”
Prog. Energy Combust. Sci.
,
34
(
4
), pp.
499
550
.10.1016/j.pecs.2007.11.002
6.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
7.
Roy
,
G.
,
Frolov
,
S.
,
Borisov
,
A.
, and
Netzer
,
D.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
8.
Ma
,
J. Z.
,
Luan
,
M.-Y.
,
Xia
,
Z.-J.
,
Wang
,
J.-P.
,
Zhang
,
S-J.
,
Yao
,
S-B.
, and
Wang
,
B.
,
2020
, “
Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines
,”
AIAA J.
,
58
(
12
), pp.
4976
5035
.10.2514/1.J058157
9.
Hishida
,
M.
,
Fujiwara
,
T.
, and
Wolanski
,
P.
,
2009
, “
Fundamentals of Rotating Detonations
,”
Shock Waves
,
19
(
1
), pp.
1
10
.10.1007/s00193-008-0178-2
10.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
11.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.10.1115/1.2204628
12.
Bobusch
,
B. C.
,
Berndt
,
P.
,
Paschereit
,
C. O.
, and
Klein
,
R.
,
2014
, “
Shockless Explosion Combustion: An Innovative Way of Efficient Constant Volume Combustion in Gas Turbines
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1680
1689
.10.1080/00102202.2014.935624
13.
Boust
,
B.
,
Michalski
,
Q.
, and
Bellenoue
,
M.
,
2016
, “
Experimental Investigation of Ignition and Combustion Processes in a Constant-Volume Combustion Chamber for Air-Breathing Propulsion
,”
AIAA
Paper No. 2016-4699.10.2514/6.2016-4699
14.
Labarrere
,
L.
,
Poinsot
,
T.
,
Dauptain
,
A.
,
Duchaine
,
F.
,
Bellenoue
,
M.
, and
Boust
,
B.
,
2016
, “
Experimental and Numerical Study of Cyclic Variations in a Constant Volume Combustion Chamber
,”
Combust. Flame
,
172
, pp.
49
61
.10.1016/j.combustflame.2016.06.027
15.
Boust
,
B.
,
Bellenoue
,
M.
, and
Michalski
,
Q.
,
2022
, “
Pressure Gain and Specific Impulse Measurements in a Constant-Volume Combustor Coupled to an Exhaust Plenum
,”
Active Flow and Combustion Control 2021
,
Springer
, Berlin, pp.
3
15
.
16.
Gallis
,
P.
,
Misul
,
D. A.
,
Salvadori
,
S.
,
Bellenoue
,
M.
, and
Boust
,
B.
,
2022
, “
Development and Validation of a 0-d/1-d Model to Evaluate Pulsating Conditions From a Constant Volume Combustor
,”
Joint Meeting of International Workshop on Detonation for Propulsion (IWDP) and International Constant Volume and Detonation Combustion Workshop (ICVDCW)
, Aug. 15–19.https://inspire.cerfacs.fr/wpcontent/uploads/sites/113/2022/08/IWDP_ICVDCW_ShortPaper_Polito_ENSMA.pdf
17.
Gallis
,
P.
,
Misul
,
D. A.
,
Bellenoue
,
M.
,
Boust
,
B.
, and
Salvadori
,
S.
,
2024
, “
Development of 1d Model of Constant-Volume Combustor and Numerical Analysis of the Exhaust Nozzle
,”
Energies
,
17
(
5
), p.
1191
.10.3390/en17051191
18.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Performance of Axial Turbines Exposed to Large Fluctuations
,”
AIAA
Paper No. 2017-4817.10.2514/6.2017-4817
19.
Glaser
,
A.
,
Caldwell
,
N.
, and
Gutmark
,
E.
,
2006
, “
Performance Measurements of a Pulse Detonation Combustor Array Integrated With an Axial Flow Turbine
,”
AIAA
Paper No. 2006-1232.10.2514/6.2006-1232
20.
George
,
A. S.
,
Driscoll
,
R.
,
Gutmark
,
E.
, and
Munday
,
D.
,
2014
, “
Experimental Comparison of Axial Turbine Performance Under Steady and Pulsating Flows
,”
ASME J. Turbomach.
,
136
(
11
), p.
111005
.10.1115/1.4028115
21.
Anand
,
V.
,
St. George
,
A.
,
Knight
,
E.
, and
Gutmark
,
E.
,
2019
, “
Investigation of Pulse Detonation Combustors—Axial Turbine System
,”
Aerosp. Sci. Technol.
,
93
, p.
105350
.10.1016/j.ast.2019.105350
22.
Fernelius
,
M.
,
Gorrell
,
S. E.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2013
, “
Effect of Periodic Pressure Pulses on Axial Turbine Performance
,”
AIAA
Paper No. 2013-3687.10.2514/6.2013-3687
23.
Fernelius
,
M. H.
, and
Gorrell
,
S. E.
,
2020
, “
Mapping Efficiency of a Pulsing Flow-Driven Turbine
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061202
.10.1115/1.4045993
24.
Ni
,
R. H.
,
Humber
,
W.
,
Ni
,
M.
,
Sondergaard
,
R.
, and
Ooten
,
M.
,
2013
, “
Performance Estimation of a Turbine Under Partial-Admission and Flow Pulsation Conditions at Inlet
,”
ASME
Paper No. GT2013-94811.10.1115/GT2013-94811
25.
Xisto
,
C.
,
Petit
,
O.
,
Grönstedt
,
T.
,
Rolt
,
A.
,
Lundbladh
,
A.
, and
Paniagua
,
G.
,
2018
, “
The Efficiency of a Pulsed Detonation Combustor-Axial Turbine Integration
,”
Aerosp. Sci. Technol.
,
82-83
, pp.
80
91
.10.1016/j.ast.2018.08.038
26.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Integration of a Transonic High-Pressure Turbine With a Rotating Detonation Combustor and a Diffuser
,”
Int. J. Turbo Jet-Engines
, 40(1), pp.
1
10
.https://ui.adsabs.harvard.edu/abs/2023IJT JE..40....1L/abstract
27.
Arts
,
T.
,
De Rouvroit
,
M. L.
, and
Rutherford
,
A.
,
1990
,
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,
Von Karman Institute for Fluid Dynamics
, Rhode Saint Genèse, Belgium.
28.
Arts
,
T.
, and
De Rouvroit
,
M. L.
,
1990
, “
Aero-Thermal Performance of a Two Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME
Paper No. 90-GT-358.10.1115/90-GT-358
29.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k-w Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.10.2514/1.36541
30.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.10.2514/2.457
31.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2005
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.10.1115/1.2098807
32.
Suresh
,
A.
,
Hofer
,
D. C.
, and
Tangirala
,
V. E.
,
2011
, “
Turbine Efficiency for Unsteady, Periodic Flows
,”
ASME J. Turbomach.
,
134
(
3
), p.
034501
.10.1115/1.4003246
You do not currently have access to this content.