Abstract

For low-emission, small-scale combined heat and power generation, integrating a biomass gasifier with a downstream solid oxide fuel cell system is very promising due to their similar operating conditions in terms of temperatures and pressures. This match avoids intermediate high-temperature heat exchangers and improves system efficiency. However, to couple both systems, a high-temperature and oil-free compressor is required to compress and push the low-density, high-temperature biosyngas from the gasifier to the solid oxide fuel cell stack. The design and development of this high-temperature, high-speed, and gas-bearing supported compressor is presented in this work. A holistic iterative process involving preliminary design, meanline analysis using commercial tools and in-house models is used for the design, which is then numerically analyzed using computational fluid dynamics. The goal is to achieve a design with a wide operating range and high robustness that withstands extreme working conditions. The 727 W machine is designed to run up to 210 krpm to compress 18.23 kg h−1 of syngas at 350 °C and 0.81 bar. The centrifugal compressor has a tip diameter of 38 mm and consists of 9 backswept main and splitter blades. The impeller is made of Ti6Al4V and coated to prevent hydrogen embrittlement from the hot and highly reactive biosyngas. The results obtained from the established models suggest a good concordance with the results from numerical analyses, despite the high temperatures and small scale of this design.

References

1.
Seitarides
,
T.
,
Athanasiou
,
C.
, and
Zabaniotou
,
A.
,
2008
, “
Modular Biomass Gasification-Based Solid Oxide Fuel Cells (SOFC) for Sustainable Development
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1251
1276
.10.1016/j.rser.2007.01.020
2.
Caliandro
,
P.
,
Tock
,
L.
,
Ensinas
,
A. V.
, and
Marechal
,
F.
,
2014
, “
Thermo-Economic Optimization of a Solid Oxide Fuel Cell – Gas Turbine System Fuelled With Gasified Lignocellulosic Biomass
,”
Energy Convers. Manage.
,
85
, pp.
764
773
.10.1016/j.enconman.2014.02.009
3.
Jia
,
J.
,
Abudula
,
A.
,
Wei
,
L.
,
Sun
,
B.
, and
Shi
,
Y.
,
2015
, “
Thermodynamic Modeling of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System
,”
Renewable Energy
,
81
, pp.
400
410
.10.1016/j.renene.2015.03.030
4.
Colpan
,
C. O.
,
Hamdullahpur
,
F.
,
Dincer
,
I.
, and
Yoo
,
Y.
,
2010
, “
Effect of Gasification Agent on the Performance of Solid Oxide Fuel Cell and Biomass Gasification Systems
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
5001
5009
.10.1016/j.ijhydene.2009.08.083
5.
Alderucci
,
V.
,
Antonucci
,
P. L.
,
Maggio
,
G.
,
Giordano
,
N.
, and
Antonucci
,
V.
,
1994
, “
Thermodynamic Analysis of SOFC Fuelled by Biomass-Derived Gas
,”
Int. J. Hydrogen Energy
,
19
(
4
), pp.
369
376
.10.1016/0360-3199(94)90070-1
6.
Omosun
,
A. O.
,
Bauen
,
A.
,
Brandon
,
N. P.
,
Adjiman
,
C. S.
, and
Hart
,
D.
,
2004
, “
Modelling System Efficiencies and Costs of Two Biomass-Fuelled SOFC Systems
,”
J. Power Sources
,
131
(
1–2
), pp.
96
106
.10.1016/j.jpowsour.2004.01.004
7.
Subotić
,
V.
,
Baldinelli
,
A.
,
Barelli
,
L.
,
Scharler
,
R.
,
Pongratz
,
G.
,
Hochenauer
,
C.
, and
Anca-Couce
,
A.
,
2019
, “
Applicability of the SOFC Technology for Coupling With Biomass-Gasifier Systems: Short- and Long-Term Experimental Study on SOFC Performance and Degradation Behaviour
,”
Appl. Energy
,
256
, p.
113904
.10.1016/j.apenergy.2019.113904
8.
Ud Din
,
Z.
, and
Zainal
,
Z. A.
,
2016
, “
Biomass Integrated Gasification–SOFC Systems: Technology Overview
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1356
1376
.10.1016/j.rser.2015.09.013
9.
Pérez-Fortes
,
M.
,
He
,
V.
,
Nakajo
,
A.
,
Schiffmann
,
J.
,
Maréchal
,
F.
, and
Van Herle
,
J.
,
2021
, “
Techno-Economic Optimization of an Integrated Biomass Waste Gasifier–Solid Oxide Fuel Cell Plant
,”
Front. Energy Res.
,
9
, pp.
1
20
.10.3389/fenrg.2021.665585
10.
Rokni
,
M.
,
2014
, “
Thermodynamic and Thermoeconomic Analysis of a System With Biomass Gasification, Solid Oxide Fuel Cell (SOFC) and Stirling Engine
,”
Energy
,
76
, pp.
19
31
.10.1016/j.energy.2014.01.106
11.
Hosseinpour
,
J.
,
Chitsaz
,
A.
,
Liu
,
L.
, and
Gao
,
Y.
,
2020
, “
Simulation of Eco-Friendly and Affordable Energy Production Via Solid Oxide Fuel Cell Integrated With Biomass Gasification Plant Using Various Gasification Agents
,”
Renewable Energy
,
145
, pp.
757
771
.10.1016/j.renene.2019.06.033
12.
Bang-Møller
,
C.
, and
Rokni
,
M.
,
2010
, “
Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2330
2339
.10.1016/j.enconman.2010.04.006
13.
Wu
,
Z.
,
Zhu
,
P.
,
Yao
,
J.
,
Zhang
,
S.
,
Ren
,
J.
,
Yang
,
F.
, and
Zhang
,
Z.
,
2020
, “
Combined Biomass Gasification, SOFC, IC Engine, and Waste Heat Recovery System for Power and Heat Generation: Energy, Exergy, Exergoeconomic, Environmental (4E) Evaluations
,”
Appl. Energy
,
279
, p.
115794
.10.1016/j.apenergy.2020.115794
14.
Singh
,
D.
,
Hernández-Pacheco
,
E.
,
Hutton
,
P. N.
,
Patel
,
N.
, and
Mann
,
M. D.
,
2005
, “
Carbon Deposition in an SOFC Fueled by Tar-Laden Biomass Gas: A Thermodynamic Analysis
,”
J. Power Sources
,
142
(
1–2
), pp.
194
199
.10.1016/j.jpowsour.2004.10.024
15.
Marcantonio
,
V.
,
Del Zotto
,
L.
,
Ouweltjes
,
J. P.
, and
Bocci
,
E.
,
2022
, “
Main Issues of the Impact of Tar, H2S, HCl and Alkali Metal From Biomass-Gasification Derived Syngas on the SOFC Anode and the Related Gas Cleaning Technologies for Feeding a SOFC System: A Review
,”
Int. J. Hydrogen Energy
,
47
(
1
), pp.
517
539
.10.1016/j.ijhydene.2021.10.023
16.
Panopoulos
,
K. D.
,
Fryda
,
L. E.
,
Karl
,
J.
,
Poulou
,
S.
, and
Kakaras
,
E.
,
2006
, “
High Temperature Solid Oxide Fuel Cell Integrated With Novel Allothermal Biomass Gasification: Part I: Modelling and Feasibility Study
,”
J. Power Sources
,
159
(
1
), pp.
570
585
.10.1016/j.jpowsour.2005.12.024
17.
Wongchanapai
,
S.
,
Iwai
,
H.
,
Saito
,
M.
, and
Yoshida
,
H.
,
2012
, “
Performance Evaluation of an Integrated Small-Scale SOFC-Biomass Gasification Power Generation System
,”
J. Power Sources
,
216
, pp.
314
322
.10.1016/j.jpowsour.2012.05.098
18.
Craven
,
J. M.
,
2014
, “
Energy Efficient Solids Feed System for High Pressure Processes
,”
Ph.D. thesis
,
University of Sheffield
, Sheffield, UK.https://core.ac.uk/download/pdf/29030339.pdf
19.
Wilén
,
C.
, and
Rautalin
,
A.
,
1993
, “
Handling and Feeding of Biomass to Pressurized Reactors: Safety Engineering
,”
Bioresour. Technol.
,
46
(
1–2
), pp.
77
85
.10.1016/0960-8524(93)90057-I
20.
Kurkela
,
E.
,
Kurkela
,
M.
, and
Hiltunen
,
I.
,
2021
, “
Pilot-Scale Development of Pressurized Fixed-Bed Gasification for Synthesis Gas Production From Biomass Residues
,”
Biomass Conv. Bioref.
,
13
(
8
), pp.
6553
6574
.10.1007/s13399-021-01554-2
21.
Louthan
,
M. R.
, and
Caskey
,
G. R.
,
1976
, “
Hydrogen Transport and Embrittlement in Structural Metals
,”
Int. J. Hydrogen Energy
,
1
(
3
), pp.
291
305
.10.1016/0360-3199(76)90024-0
22.
BLAZE
,
2023
, “
BLAZE Project | Biomass Low Cost Advanced Zero Emission Small-to-Medium Scale Integrated Gasifier Fuel Cell Combined Heat and Power Plant
,” accessed Nov. 29, 2023, https://www.blazeproject.eu/
23.
Balje
,
O. E.
,
1981
,
Turbomachines: A Guide to Design, Selection and Theory
,
Wiley Inc
., New York.
24.
Wagner
,
P. H.
,
2019
, “
Integrated Design, Optimization, and Experimental Realization of a Steam-Driven Micro Recirculation Fan for Solid Oxide Fuel Cell Systems
,” Ph.D. thesis,
Ecole Polytechnique Fédérale de Lausanne EPFL
,
Lausanne, Switzerland
.
25.
AspenTech
,
2024
, “
Aspen Plus | Leading Process Simulation Software | AspenTech
,” accessed May 1, 2024, https://www.aspentech.com/en/products/engineering/aspen-plus
26.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fund.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
27.
Mathias
,
P. M.
,
Klotz
,
H. C.
, and
Prausnitz
,
J. M.
,
1991
, “
Equation-of-State Mixing Rules for Multicomponent Mixtures: The Problem of Invariance
,”
Fluid Phase Equilib.
,
67
, pp.
31
44
.10.1016/0378-3812(91)90045-9
28.
Wagner
,
P. H.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2020
, “
Theoretical and Experimental Investigation of a Small-Scale, High-Speed, and Oil-Free Radial Anode Off-Gas Recirculation Fan for Solid Oxide Fuel Cell Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041023
.10.1115/1.4045104
29.
Wagner
,
P. H.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2021
, “
Theoretical and Experimental Investigation of a 34 Watt Radial-Inflow Steam Turbine With Partial Admission
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081002
.10.1115/1.4049483
30.
Huber
,
M. L.
,
Lemmon
,
E. W.
,
Bell
,
I. H.
, and
McLinden
,
M. O.
,
2022
, “
The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids
,”
Ind. Eng. Chem. Res.
,
61
(
42
), pp.
15449
15472
.10.1021/acs.iecr.2c01427
31.
Javed
,
A.
,
Arpagaus
,
C.
,
Bertsch
,
S.
, and
Schiffmann
,
J.
,
2016
, “
Design of Oil-Free Turbocompressors for a Two-Stage Industrial Heat Pump Under Variable Operating Conditions
,”
23rd International Compressor Engineering Conference
, West Lafayette, IN, July 11–14, p.
11
.https://docs.lib.purdue.edu/icec/2405/
32.
Wiesner
,
F. J.
,
1979
, “
A New Appraisal of Reynolds Number Effects on Centrifugal Compressor Performance
,”
ASME J. Eng. Power
,
101
(
3
), pp.
384
392
.10.1115/1.3446586
33.
Pfleiderer
,
C.
, and
Petermann
,
H.
,
2005
,
Strömungsmaschinen
,
Klassiker Der Technik, Springer-Verlag
,
Berlin, Heidelberg
.
34.
Eck
,
B.
,
2003
,
Ventilatoren - Entwurf Und Betrieb Der Radial-, Axial- Und Querstromventilatoren
,
Springer
,
Berlin, Heidelberg
.
35.
Carolus
,
T.
,
2013
,
Ventilatoren - Aerodynamischer Entwurf, Schallverhersage, Konstruktion
,
Vieweg+Teubner Verlag
,
Wiesbaden, Germany
.
36.
Concepts NREC,
2022
, “
Centrifugal Compressor Design Software
,” accessed Dec. 15, 2022, https://www.conceptsnrec.com/compressor-design-software
37.
Diehl
,
M.
,
Schreiber
,
C.
, and
Schiffmann
,
J.
,
2020
, “
The Role of Reynolds Number Effect and Tip Leakage in Compressor Geometry Scaling at Low Turbulent Reynolds Numbers
,”
ASME J. Turbomach.
,
142
(
3
), p.
031003
.10.1115/1.4045465
38.
Wagner
,
P. H.
, and
Gu
,
L.
,
2020
, “
Influence of Large Relative Tip Clearances for A Micro Radial Fan and Design Guidelines for Increased Efficiency
,”
ASME
No. GT2020-15994.10.1115/GT2020-15994
39.
Mcbride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,” Report No.
NASA-TM-4513
.https://ntrs.nasa.gov/citations/19940013151
40.
Diehl
,
M.
,
2019
, “
Mitigation of Tip Leakage Induced Phenomena in a Low Reynolds Number Centrifugal Compressor Via Blade Loading Distribution
,”
Ph.D. thesis
, EPFL, Lausanne, Switzerland.https://infoscience.epfl.ch/entities/publication/1897824c-0992-4b78-a14e-61450e3f1fbf
41.
Galvas
,
R.
,
1973
, “
Fortran Program for Predicting Off-Design Performance of Centrifugal Compressors
,” NASA, Washington, DC, NASA Technical Report No.
TN D-7487
.https://ntrs.nasa.gov/citations/19740001912
42.
Jansen
,
W.
,
1970
, “
A Method for Calculating the Flow in a Centrifugal Impeller When Entropy Gradients Are Present
,” Institution of Mechanical Engineers, Royal Society Conference on Internal Aerodynamics (
Turbomachinery
), pp.
133
146
.https://cir.nii.ac.jp/crid/1571135650145571968
43.
Coppage
,
J.
, and
Dallenbach
,
F.
,
1956
, “
Study of Supersonic Radial Compressors for Refrigeration and Pressurization Systems
,” Report No. AD0110467.
44.
Rodgers
,
C.
,
1977
, “
Impeller Stalling as Influenced by Diffusion Limitations
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
84
93
.10.1115/1.3448569
45.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
46.
Whitfield
,
A.
, and
Baines
,
N.
,
1990
, “
Design of Radial Turbomachines
,” accessed Jan. 5, 2024, https://www.semanticscholar.org/paper/Design-of-radial-turbomachines-Whitfield-Baines/5c2cadc99dbe705fcc910a0017b485fb3d879efe
47.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
48.
Wiesner
,
F. J.
,
1967
, “
A Review of Slip Factors for Centrifugal Impellers
,”
ASME J. Eng. Power
,
89
(
4
), pp.
558
566
.10.1115/1.3616734
49.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.10.1063/1.1747673
50.
Concepts NREC,
2022
, “
AxCent Blade Design Software
,” Concepts NREC, accessed Dec. 15, 2022, https://www.conceptsnrec.com/axcent-software
51.
Pianko
,
M.
, and
NATO
, eds.,
1983
,
Propulsion and Energetics Panel Working Group 14 on Suitable Averaging Techniques in Non-Uniform Internal Flows
,
AGARD
,
Neuilly-sur-Seine, France
, AGARD advisory Report No. 182.
52.
He
,
V.
,
Gaffuri
,
M.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2023
, “
Readiness Evaluation of SOFC-MGT Hybrid Systems With Carbon Capture for Distributed Combined Heat and Power
,”
Energy Convers. Manage.
,
278
, p.
116728
.10.1016/j.enconman.2023.116728
53.
Liu
,
W.
,
Gjika
,
K.
, and
Schiffmann
,
J.
,
2023
, “
Design and Experimental Investigation of a Herringbone Grooved Gas Bearing Supported Turbocharger
,”
Mech. Syst. Signal Process.
,
186
, p.
109828
.10.1016/j.ymssp.2022.109828
You do not currently have access to this content.