Abstract

Efficient and accurate parameter identification methods are urgently needed to develop high-performance sealing devices. Although the existing prediction methods have been widely validated, researchers are still grappling with the tradeoff between frequency resolution and computational cost. This paper proposed a Hilbert-transform-based time-frequency analysis method to identify the dynamic characteristics of annular gas seals. The frequency-sweep whirling orbit model (FSM) was adopted as the excitation signal of rotor whirling motion. The transient flow field within the seal clearance was numerically simulated by the computational fluid dynamic (CFD) solution combined with the mesh deformation technique. The empirical amplitude-modulated (AM) and frequency-modulated (FM) decomposition and the direct quadrature method were utilized to approximate the analytic signals of monitored response forces. High-resolution and frequency-dependent dynamic coefficients were determined by the Hilbert transform (HT) of the linear response-force/rotor-motion model. To validate the present method and determine the frequency-sweep mode, the dynamic coefficients of three typical annular gas seals, including a labyrinth seal (LABY), a fully partitioned pocket damper seal (FPDS), and a hole-pattern seal (HPS), were evaluated by the linear and quadratic frequency-sweep modes, respectively. The results indicate that the dynamic coefficients obtained by the quadratic FSM are all in good agreement with the experimental data, and have almost the same accuracy as the well-known multifrequency whirling orbit model (MFM). Combined with the proposed adaptive time-step scheme, the present method can obtain high-frequency-resolution dynamic coefficients of annular gas seals with a 48.6% reduction in computational time compared to MFM. Furthermore, the application of the present method in wide-bandwidth cases was also illustrated.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
3.
Armstrong
,
J.
, and
Perricone
,
F.
,
1996
, “
Turbine Instability Solution-Honeycomb Seals
,”
Proceedings of the 25th Turbomachinery Symposium
, Turbomachinery Laboratories,
Texas A&M University
,
Houston, TX
, Sept. 17–19, pp.
47
56
.https://hdl.handle.net/1969.1/163441
4.
Gamal Eldin
,
A. M.
,
2007
, “
Leakage and Rotordynamic Effects of Pocket Damper Seals and See-Through Labyrinth Seals
,”
Ph.D. thesis
,
Texas A&M University
,
College Station, TX
.https://oaktrust.library.tamu.edu/server/api/core/bitstreams/17b60c93-d5fe-4d27-a479-01872ff63d93/content
5.
Iwatsubo
,
T.
,
1980
, “
Evaluation of Instability Forces of Labyrinth Seals in Turbines or Compressors
,”
Proceedings of the Rotordynamic Instability Problems in High Performance Turbomachinery
,
Lewis Research Center, Texas A&M University
,
Houston, TX
, pp.
139
167
.https://ntrs.nasa.gov/api/citations/19800021214/downloads/19800021214.pdf
6.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
An Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
325
331
.10.1115/1.3239907
7.
Li
,
J.
,
San Andrés
,
L.
, and
Vance
,
J.
,
1999
, “
A Bulk-Flow Analysis of Multiple-Pocket Gas Damper Seals
,”
ASME J. Eng. Gas Turbines Power
,
121
(
2
), pp.
355
363
.10.1115/1.2817128
8.
Shin
,
Y. S.
,
2005
, “
Modifications to a Two-Control-Volume, Frequency Dependent, Transfer-Function Analysis of Hole-Pattern Gas Annular Seals
,”
Master's thesis
,
Texas A&M University
,
College Station, TX
.https://oaktrust.library.tamu.edu/items/4ae03c99-6d14-441b-9f07-596fe5865059
9.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.10.1115/1.1615248
10.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.10.1115/1.2647531
11.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.10.1115/1.4003403
12.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
Rotordynamic Performance Prediction for Surface-Roughened Seal Using Transient Computational Fluid Dynamics and Elliptical Orbit Model
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
8
), pp.
975
988
.10.1177/0957650912460358
13.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.10.1115/1.4023143
14.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
A Generalized Prediction Method for Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092506
.10.1115/1.4029883
15.
Thorat
,
M. R.
, and
Hardin
,
J. R.
,
2020
, “
Rotordynamic Characteristics Prediction for Hole-Pattern Seals Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021004
.10.1115/1.4044760
16.
Nosaka
,
M.
,
Takada
,
S.
,
Kikuchi
,
M.
,
Sudo
,
T.
, and
Yoshida
,
M.
,
2004
, “
Ultra-High-Speed Performance of Ball Bearings and Annular Seals in Liquid Hydrogen at up to 3 Million DN (120,000 Rpm)
,”
Tribol. Trans.
,
47
(
1
), pp.
43
53
.10.1080/05698190490279047
17.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.10.1115/1.4004537
18.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals—Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
19.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
20.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
,
454
(
1971
), pp.
903
995
.10.1098/rspa.1998.0193
21.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.10.1016/j.ymssp.2010.07.018
22.
Bedrosian
,
E.
,
1963
, “
A Product Theorem for Hilbert Transforms
,”
Proc. IEEE
,
51
(
5
), pp.
868
869
.10.1109/PROC.1963.2308
23.
Nuttall
,
A. H.
, and
Bedrosian
,
E.
,
1966
, “
On the Quadrature Approximation to the Hilbert Transform of Modulated Signals
,”
Proc. IEEE
,
54
(
10
), pp.
1458
1459
.10.1109/PROC.1966.5138
24.
Huang
,
N. E.
,
Wu
,
Z.
,
Long
,
S. R.
,
Arnold
,
K. C.
,
Chen
,
X.
, and
Blank
,
K.
,
2009
, “
On Instantaneous Frequency
,”
Adv. Adapt. Data Anal.
,
01
(
2
), pp.
177
229
.10.1142/S1793536909000096
25.
Marple
,
L.
,
1999
, “
Computing the Discrete-Time ‘Analytic’ Signal Via FFT
,”
IEEE Trans. Signal Process.
,
47
(
9
), pp.
2600
2603
.10.1109/78.782222
26.
Luo
,
H.
,
Fang
,
X.
, and
Ertas
,
B.
,
2009
, “
Hilbert Transform and Its Engineering Applications
,”
AIAA J.
,
47
(
4
), pp.
923
932
.10.2514/1.37649
27.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
01
(
1
), pp.
1
41
.10.1142/S1793536909000047
28.
Akima
,
H.
,
1970
, “
A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures
,”
J. Assoc. Comput. Mach.
,
17
(
4
), pp.
589
602
.10.1145/321607.321609
29.
Picinbono
,
B.
,
1997
, “
On Instantaneous Amplitude and Phase of Signals
,”
IEEE Trans. Signal Process.
,
45
(
3
), pp.
552
560
.10.1109/78.558469
30.
Qian
,
T.
,
2006
, “
Analytic Signals and Harmonic Measures
,”
J. Math. Anal. Appl.
,
314
(
2
), pp.
526
536
.10.1016/j.jmaa.2005.04.003
31.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Comparisons of Rotordynamic Characteristics Predictions for Annular Gas Seals Using the Transient Computational Fluid Dynamic Method Based on Different Single-Frequency and Multifrequency Rotor Whirling Models
,”
ASME J. Tribol.
,
138
(
1
), p.
011701
.10.1115/1.4030807
32.
ANSYS
,
2006
, “
ANSYS CFX-Solver Theory Guide. Version 11.0
,”
ANSYS
,
Canonsburg, PA
.
33.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Numerical Investigations on Rotordynamic Characteristic of Hole-Pattern Seals With Two Different Hole-Diameters
,”
ASME J. Turbomach.
,
137
(
7
), p.
071011
.10.1115/1.4029239
34.
Huang
,
N. E.
, and
Wu
,
Z.
,
2008
, “
A Review on Hilbert-Huang Transform: Method and Its Applications to Geophysical Studies
,”
Rev. Geophys.
,
46
(
2
), p.
2007RG000228
.10.1029/2007RG000228
35.
Jin
,
Z.
,
Mao
,
K.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
A Comparison of Static and Rotordynamic Characteristics for Three Types of Impeller Front Seals in a Liquid Oxygen Turbopump
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031025
.10.1115/1.4055351
You do not currently have access to this content.