Abstract

Natural gas is one of the common fuels that is used in gas turbines for power generation. Due to its interest in power generation and other applications, there are several chemical kinetic models available in the literature for natural gas. The power generation sector is moving toward decarbonization and there has been increased interest in replacing conventional fuels with fuels that produce less/zero carbon emissions like hydrogen. Pure hydrogen has a very wide flammability range and poses risks related to flashback and high thermal NOx production. Blending hydrogen with natural gas helps in having better control over the fuel properties. However, the literature lacks well-validated chemical kinetic models for the combustion of hydrogen blended natural gas for undilute mixtures at gas turbine-relevant conditions (8–16 bar). Hence, in this work, we develop a detailed chemical kinetic model for hydrogen-blended natural gas and validate it with a wide range of experimental data for both dilute and undilute mixtures relevant to gas turbine operating conditions. We outline the strengths and weaknesses of the current mechanism to aid future users of our chemical kinetic mechanism. The detailed chemical kinetic mechanism is then reduced to two smaller versions (60 species and 44 species mechanisms) without significant loss in accuracy using Directed Relation Graph with Error Propagation (DRGEP). To improve the prediction for pure hydrogen combustion while retaining all other predictive capabilities, an optimization is carried out for the most sensitive reactions for hydrogen combustion. The resultant mechanism can predict a wide range of experimental results with the least cumulative error.

References

1.
Liu
,
Z.
,
Deng
,
Z.
,
Davis
,
S.
, and
Ciais
,
P.
,
2023
, “
Monitoring Global Carbon Emissions in 2022
,”
Nat. Rev. Earth Environ.
,
4
(
4
), pp.
205
206
.10.1038/s43017-023-00406-z
2.
Webb
,
B. M.
,
Harper
,
J.
,
Steele
,
R.
,
Noble
,
D. R.
,
Emerson
,
B.
,
Wu
,
D.
, and
Lieuwen
,
T.
,
2023
, “
Second Edition: Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME
Paper No. GT2023-103962.10.1115/GT2023-103962
3.
Cristello
,
J. B.
,
Yang
,
J. M.
,
Hugo
,
R.
,
Lee
,
Y.
, and
Park
,
S. S.
,
2023
, “
Feasibility Analysis of Blending Hydrogen Into Natural Gas Networks
,”
Int. J. Hydrogen Energy
,
48
(
46
), pp.
17605
17629
.10.1016/j.ijhydene.2023.01.156
4.
Gregory
,
P. S.
,
David
,
M. G.
,
Michael
,
F.
,
Nigel
,
W. M.
,
Boris
,
E.
,
Mikhail
,
G. C.
,
Thomas
,
B.
, et al., “
GRI 3.0 Mechanism
,” accessed Aug. 28, 2024, http://www.me.berkeley.edu/gri_mech/
5.
Zhou
,
C.-W.
,
Li
,
Y.
,
Burke
,
U.
,
Banyon
,
C.
,
Somers
,
K. P.
,
Ding
,
S.
,
Khan
,
S.
,
Hargis
,
J. W.
,
Sikes
,
T.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
AlAbbad
,
M.
,
Farooq
,
A.
,
Pan
,
Y.
,
Zhang
,
Y.
,
Huang
,
Z.
,
Lopez
,
J.
,
Loparo
,
Z.
,
Vasu
,
S. S.
, and
Curran
,
H. J.
,
2018
, “
An Experimental and Chemical Kinetic Modeling Study of 1,3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements
,”
Combust. Flame
,
197
, pp.
423
438
.10.1016/j.combustflame.2018.08.006
6.
Dagaut
,
P.
, and
Dayma
,
G.
,
2006
, “
Hydrogen-Enriched Natural Gas Blend Oxidation Under High-Pressure Conditions: Experimental and Detailed Chemical Kinetic Modeling
,”
Int. J. Hydrogen Energy
,
31
(
4
), pp.
505
515
.10.1016/j.ijhydene.2005.04.020
7.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
,
Morones
,
A.
,
Petersen
,
E. L.
, and
Güthe
,
F.
,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
8.
Pierro
,
M.
,
Urso
,
J.
,
Rahman
,
R. K.
,
Dennis
,
C.
,
Albright
,
M.
,
McGaunn
,
J.
,
Kinney
,
C.
, and
Vasu
,
S. S.
,
2023
, “
Hydrogen and Ammonia Blending With Natural Gas: Ignition Delay Times and Chemical Kinetic Model Validation at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2023-100992.10.1115/GT2023-100992
9.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.10.1016/j.proci.2004.08.145
10.
Niemeyer
,
K. E.
, and
Sung
,
C.-J.
,
2011
, “
On the Importance of Graph Search Algorithms for DRGEP-Based Mechanism Reduction Methods
,”
Combust. Flame
,
158
(
8
), pp.
1439
1443
.10.1016/j.combustflame.2010.12.010
11.
Baker
,
J. B.
,
Rahman
,
R. K.
,
Pierro
,
M.
,
Higgs
,
J.
,
Urso
,
J.
,
Kinney
,
C.
, and
Vasu
,
S.
,
2022
, “
Experimental Ignition Delay Time Measurements and Chemical Kinetics Modeling of Hydrogen/Ammonia/Natural Gas Fuels
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041002
.
12.
Konnov
,
A. A.
,
2019
, “
Yet Another Kinetic Mechanism for Hydrogen Combustion
,”
Combust. Flame
,
203
, pp.
14
22
.10.1016/j.combustflame.2019.01.032
13.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. C.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.10.1016/j.combustflame.2013.01.001
14.
Burke
,
U.
,
Somers
,
K. P.
,
O'Toole
,
P.
,
Zinner
,
C. M.
,
Marquet
,
N.
,
Bourque
,
G.
,
Petersen
,
E. L.
,
Metcalfe
,
W. K.
,
Serinyel
,
Z.
, and
Curran
,
H. J.
,
2015
, “
An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures
,”
Combust. Flame
,
162
(
2
), pp.
315
330
.10.1016/j.combustflame.2014.08.014
15.
Baigmohammadi
,
M.
,
Patel
,
V.
,
Martinez
,
S.
,
Panigrahy
,
S.
,
Ramalingam
,
A.
,
Burke
,
U.
,
Somers
,
K. P.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2020
, “
A Comprehensive Experimental and Simulation Study of Ignition Delay Time Characteristics of Single Fuel C1–C2 Hydrocarbons Over a Wide Range of Temperatures, Pressures, Equivalence Ratios, and Dilutions
,”
Energy Fuels
,
34
(
3
), pp.
3755
3771
.10.1021/acs.energyfuels.9b04139
16.
Kim
,
G. Y.
, and
Sin
,
G. S.
,
2001
, “
Shock Tube and Modeling Study of the Ignition of Propane
,”
Bull. Korean Chem. Soc.
,
22
(
3
), pp.
303
307
.10.5012/bkcs.2001.22.3.303
17.
Herzler
,
J.
,
Jerig
,
L.
, and
Roth
,
P.
,
2004
, “
Shock-Tube Study of the Ignition of Propane at Intermediate Temperatures and High Pressures
,”
Combust. Sci. Technol.
,
176
(
10
), pp.
1627
1637
.10.1080/00102200490487201
18.
Healy
,
D.
,
Donato
,
N. S.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Zinner
,
C. M.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
n-Butane: Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
,
157
(
8
), pp.
1526
1539
.10.1016/j.combustflame.2010.01.016
19.
Kwon
,
O. C.
, and
Faeth
,
G. M.
,
2001
, “
Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions
,”
Combust. Flame
,
124
(
4
), pp.
590
610
.10.1016/S0010-2180(00)00229-7
20.
Lowry
,
W.
,
de Vries
,
J.
,
Krejci
,
M.
,
Petersen
,
E.
,
Serinyel
,
Z.
,
Metcalfe
,
W.
,
Curran
,
H.
, and
Bourque
,
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
091501
.10.1115/1.4002809
21.
Rozenchan
,
G.
,
Zhu
,
D. L.
,
Law
,
C. K.
, and
Tse
,
S. D.
,
2002
, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames up to 60 ATM
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1461
1470
.10.1016/S1540-7489(02)80179-1
22.
Zhao
,
Z.
,
Kazakov
,
A.
,
Li
,
J.
, and
Dryer
,
F. L.
,
2004
, “
The Initial Temperature and N2 Dilution Effect on the Laminar Flame Speed of Propane/Air
,”
Combust. Sci. Technol.
,
176
(
10
), pp.
1705
1723
.10.1080/00102200490487553
23.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2005
, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2–C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
193
200
.10.1016/j.proci.2004.08.228
24.
Bosschaart
,
K. J.
, and
de Goey
,
L. P. H.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
(
3
), pp.
261
269
.10.1016/j.combustflame.2003.10.005
25.
Ellingson
,
B. A.
,
Theis
,
D. P.
,
Tishchenko
,
O.
,
Zheng
,
J.
, and
Truhlar
,
D. G.
,
2007
, “
Reactions of Hydrogen Atom With Hydrogen Peroxide
,”
J. Phys. Chem. A
,
111
(
51
), pp.
13554
13566
.10.1021/jp077379x
26.
Sutherland
,
J. W.
,
Michael
,
J. V.
,
Pirraglia
,
A. N.
,
Nesbitt
,
F. L.
, and
Klemm
,
R. B.
,
1988
, “
Rate Constant for the Reaction of O(3P) With H2 by the Flash Photolysis—Shock Tube and Flash Photolysis—Resonance Fluorescence Techniques; 504K≤T≤2495K
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
929
941
.10.1016/S0082-0784(88)80325-4
27.
Presser
,
N.
, and
Gordon
,
R. J.
,
1985
, “
The Kinetic Isotope Effect in the Reaction of O(3P) With H2, D2, and HD
,”
J. Chem. Phys.
,
82
(
3
), pp.
1291
1297
.10.1063/1.448451
28.
Hong
,
Z.
,
Davidson
,
D. F.
,
Barbour
,
E. A.
, and
Hanson
,
R. K.
,
2011
, “
A New Shock Tube Study of the H+O2→OH+O Reaction Rate Using Tunable Diode Laser Absorption of H2O Near 2.5 μm
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
309
316
.10.1016/j.proci.2010.05.101
You do not currently have access to this content.