Abstract

Modern liquid rocket engine turbopumps implement hybrid bearings, which combine hydrostatic and hydrodynamic fluid film principles, in compact and lightweight units known for their superior reusability, durability, and reliability. This study aims to provide extensive and reliable test data for the purpose of anchoring and benchmarking predictive tools for these bearings. This paper provides comprehensive dynamic response measurements of a rotor weighing 10.40 kg and approximately 60 mm in diameter at the bearing locations. The test rotor is supported on two hybrid journal bearings with a bearing length to bearing diameter ratio of approximately 0.42 and a bearing radial clearance to rotor radius ratio of around 0.0017. The bearings are tested with air, water, and liquid nitrogen, serving as surrogate test fluids for common propellants in liquid rocket engines. Rotor run-up and speed coast-down tests are conducted to measure shaft motion responses. The results clearly demonstrate that the rotordynamic characteristics of the test rotor supported on the hybrid journal bearings largely rely on properties of the test fluids and their feeding conditions. Notably, when air is pressurized into the test bearings, the shaft motion responses differ markedly from those observed with water and liquid nitrogen, primarily due to significantly lower stiffness and damping coefficients. Furthermore, rotor speed coast-down tests for each test fluid exhibit notable differences in coast-down speed over time characteristics, depending on the test fluid properties. The predicted rotor imbalance responses exhibit excellent correlation with the measurement data. The steady increase of demand and growth of the fluid film bearing technology for reusable rocket engines require accurate bearing design tools, the extensive component testing, and the implementation of the technology. The validated and developed bearing predictive models from previous research demonstrate well the characteristics of bearings under various operating fluids conditions. The findings and database presented in this work contribute not only to comprehending the performance of hybrid bearings but also to understanding and enhancing the dynamic characteristics of rotor systems supported on hybrid bearings.

References

1.
San Andrés
,
L.
,
1995
, “
Thermohydrodynamic Analysis of Fluid Film Bearings for Cryogenic Applications
,”
AIAA J. Propul. Power
,
11
(
5
), pp.
964
972
.10.2514/3.23924
2.
San Andrés
,
L.
,
2009
, “
Hydrostatic Bearings
,”
Modern Lubrication Theory, Notes 12(b), Texas A&M University Library
,
Libraries Texas A&M University Repository
,
College Station, TX
.
3.
Hannum
,
N. P.
, and
Nielson
,
C. E.
,
1983
, “
The Performance and Application of High-Speed Long Life LH2 Hybrid Bearings for Reusable Rocket Engine Turbomachinery
,”
AIAA
Paper No. 83-1389.10.2514/6.83-1389
4.
Okayasu
,
A.
,
Ohta
,
T.
,
Kamijyo
,
A.
, and
Yamada
,
H.
,
2002
, “
Key Technology for Reusable Rocket Engine Turbopump
,”
Acta Astronaut.
,
50
(
6
), pp.
351
355
.10.1016/S0094-5765(01)00163-1
5.
Lund
,
J. W.
,
1967
, “
A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings
,”
ASME J. Lubr. Technol.
,
89
(
2
), pp.
154
165
.10.1115/1.3616933
6.
Talukder
,
H. M.
, and
Stowell
,
T. B.
,
2003
, “
Pneumatic Hammer in an Externally Pressurized Orifice-Compensated Air Journal Bearing
,”
Tribol. Int.
,
36
(
8
), pp.
585
591
.10.1016/S0301-679X(02)00247-5
7.
Jung
,
H.
,
Sin
,
S.
,
Kim
,
K.
,
Heo
,
J.
,
Wee
,
M.
, and
Ryu
,
K.
,
2022
, “
On the Pneumatic Hammer of Hybrid Gas Bearings: Measurements and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121011
.10.1115/1.4055485
8.
Spica
,
P. W.
,
Hannum
,
N. P.
, and
Meyer
,
S. D.
,
1986
, “
Evaluation of a Hybrid Hydrostatic Bearing for Cryogenic Turbopump Application
,” NASA, Cleveland, OH, Technical Report No.
TM-87255
.https://ntrs.nasa.gov/citations/19860022177
9.
Murphy
,
B. T.
, and
Wagner
,
M. N.
,
1991
, “
Measurement of Rotordynamic Coefficients for a Hydrostatic Radial Bearing
,”
ASME J. Tribol.
,
113
(
3
), pp.
518
525
.10.1115/1.2920654
10.
Scharrer
,
J. K.
,
Tellier
,
J. G.
, and
Hibbs
,
R. I.
,
1992
, “
A Study of the Transient Performance of Annular Hydrostatic Journal Bearings in Liquid Oxygen
,”
AIAA
Paper No. 1992-3404.10.2514/6.1992-3404
11.
Pelfrey
,
P. C.
, and
Sishtla
,
V. M.
,
1996
, “
Investigation of Hydrostatic Bearings Operating in a Turbulent, Compressible Liquid
,”
AIAA
Paper No. 1996-3103.10.2514/6.1996-3103
12.
Rohde
,
S. M.
, and
Ezzat
,
H. A.
,
1976
, “
On the Dynamic Behavior of Hybrid Journal Bearings
,”
ASME J. Lubr. Technol.
,
98
(
1
), pp.
90
94
.10.1115/1.3452788
13.
Reddecliff
,
J. M.
, and
Vohr
,
J. H.
,
1969
, “
Hydrostatic Bearings for Cryogenic Rocket Engine Turbopumps
,”
ASME J. Lubr. Technol.
,
91
(
3
), pp.
557
575
.10.1115/1.3554989
14.
Minick
,
A.
, and
Peery
,
S.
,
1998
, “
Design and Development of an Advanced Liquid Hydrogen Turbopump
,”
AIAA
Paper No. 98-3681.10.2514/6.98-3681
15.
Chapman
,
L.
,
Crease
,
G.
,
Friant
,
J.
,
Grabowski
,
R.
, and
Schmidt
,
E.
,
2000
, “
Testing of an Advanced Liquid Hydrogen Turbopump
,”
AIAA
Paper No. 2000-3679.10.2514/6.2000-3679
16.
Kurtin
,
K. A.
,
Childs
,
D.
,
San Andrés
,
L.
, and
Hale
,
K.
,
1993
, “
Experimental Versus Theoretical Characteristics of a High-Speed Hybrid (Combination Hydrostatic and Hydrodynamic) Bearing
,”
ASME J. Tribol.
,
115
(
1
), pp.
160
168
.10.1115/1.2920971
17.
Franchek
,
N. M.
,
Childs
,
D. W.
, and
San Andrés
,
L.
,
1994
, “
Experimental Test Results for Four High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearings
,”
ASME J. Tribol.
,
116
(
1
), pp.
147
153
.10.1115/1.2927031
18.
San Andrés
,
L.
,
2000
, “
Bulk Flow Analysis of Hybrid Thrust Bearings for Process Fluid Applications
,”
ASME J. Tribol.
,
122
(
1
), pp.
170
180
.10.1115/1.555340
19.
San Andrés
,
L.
,
2002
, “
Effects of Misalignment on Turbulent Flow Hybrid Thrust Bearings
,”
ASME J. Tribol.
,
124
(
1
), pp.
212
219
.10.1115/1.1400997
20.
San Andrés
,
L.
,
Phillips
,
S.
, and
Childs
,
D.
,
2016
, “
A Water-Lubricated Hybrid Thrust Bearing: Measurements and Predictions of Static Load Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022506
.10.1115/1.4034042
21.
Ohta
,
T.
,
Kitamura
,
A.
, and
Ogata
,
H.
,
1999
, “
LH2 Turbopump Test With Hydrostatic Bearing
,”
AIAA
Paper No. 1999-2195.10.2514/6.1999-2195
22.
Oike
,
M.
,
Kikuchi
,
M.
,
Takada
,
S.
,
Sudo
,
T.
, and
Takano
,
T.
,
2012
, “
Robustness of Cryogenic Hybrid Journal Bearings
,”
Tribol. Online
,
7
(
3
), pp.
171
178
.10.2474/trol.7.171
23.
Oike
,
M.
,
Kikuchi
,
M.
,
Takada
,
S.
,
Sudo
,
T.
, and
Takano
,
T.
,
2015
, “
Influences of Journal Rotating Direction on Cryogenic Hybrid Journal Bearings
,”
Tribol. Online
,
10
(
2
), pp.
96
105
.10.2474/trol.10.96
24.
Edeline
,
E.
,
Fayolle
,
P.
,
Fonteyn
,
P.
,
Frocot
,
M.
, and
Dehouve
,
J.
,
2004
, “
Development and Testing of Fluid-Film Bearing LH2 Turbopump Demonstrator
,”
AIAA
Paper No. 2004-3688.10.2514/6.2004-3688
25.
Fayolle
,
P.
,
Lambert
,
P.-A.
,
Gelain
,
P.
,
Fonteyn
,
P.
,
Olofsson
,
H.
,
Ore
,
S.
,
Supie
,
P.
, and
Dehouve
,
J.
,
2011
, “
Major Achievements Reached Through TPX LH2-Turbopump Demonstration Program
,”
AIAA
Paper No. 2011-5786.10.2514/6.2011-5786
26.
Jolly
,
P.
,
Bonneau
,
O.
,
Arghir
,
M.
,
Romain
,
G.
, and
Dehouve
,
J.
,
2017
, “
Experimental Identification of Fluid Thin Film Dynamic Coefficients for Space Propulsion Turbo Pumps
,” Proceedings of the 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (
ISROMAC2017
), Maui, HI, Dec. 16–21, Paper No. hal-03004970
.https://hal.science/hal-03004970/document
27.
Pasini
,
A.
,
Simi
,
R.
,
Brotini
,
G.
,
Apollonio
,
A.
,
d'Agostino
,
L.
,
De Rosa
,
M.
, and
Leonardi
,
M.
,
2021
, “
A Test Facility for the Lifetime Characterization of Cryogenic High-Speed Bearings
,”
AIAA
Paper No. 2021-3561.10.2514/6.2021-3561
28.
Schimpf
,
A.
,
Ortelt
,
M.
,
Seiler
,
H.
,
Gu
,
Y.
,
Schwarzwälder
,
A.
, and
Böhle
,
M.
,
2021
, “
Experimental Investigation of Aerostatic Journal Bearings Made of Carbon Fiber-Reinforced Carbon Composites
,”
ASME J. Tribol.
,
144
(
4
), p.
041806
.10.1115/1.4052747
29.
Jeon
,
S. M.
,
Yoon
,
S.-H.
, and
Choi
,
C.-H.
,
2015
, “
Critical Speed Analysis of a 7 Ton Class Liquid Rocket Engine Oxidizer Pump
,”
J. Aerosp. Syst. Eng.
,
9
(
1
), pp.
1
6
.10.20910/JASE.2015.9.1.001
30.
San Andrés
,
L.
, and
Ryu
,
K.
,
2006
, “
Flexure Pivot Tilting Pad Hybrid Gas Bearings: Operation With Worn Clearances and Two Load-Pad Configurations
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042506
.10.1115/1.2800346
31.
San Andrés
,
L.
,
1990
, “
Turbulent Hybrid Bearings With Fluid Inertia Effects
,”
ASME J. Tribol.
,
112
(
4
), pp.
699
707
.10.1115/1.2920318
32.
ISO
,
2003
,
Mechanical Vibration – Balance Quality Requirements for Rotors in a Constant (Rigid) State – Part 1: Specification and Verification of Balance Tolerances
, 2nd ed.,
International Organization for Standardization
, Geneva, Switzerland.
33.
Yi
,
H.
,
2021
, “
Rotordynamics of Hybrid Bearing Supported Electric Pumps for Liquid Rocket Engines in Reusable Launch Vehicle: Experiments and Predictions
,” Ph.D. dissertation,
Hanyang University
,
Seoul, South Korea
.
34.
Jung
,
H.
,
Kim
,
K.
, and
Ryu
,
K.
,
2023
, “
On the Performance of Hydrostatic Journal Bearings in Air, Water, and Liquid Nitrogen: Measurements and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111011
.10.1115/1.4063282
35.
Ryu
,
K.
, and
San Andrés
,
L.
,
2013
, “
On the Failure of a Gas Foil Bearing: High Temperature Operation Without Cooling Flow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112506
.10.1115/1.4025079
36.
Lund
,
J. W.
,
1968
, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubrication Tech.
, 90(
4
), pp.
793
803
.10.1115/1.3601723
37.
Yi
,
H.
,
Jung
,
H.
,
Kim
,
K.
, and
Ryu
,
K.
,
2022
, “
Static Load Characteristics of Hydrostatic Journal Bearings: Measurements and Predictions
,”
Sensors
,
22
(
19
), p.
7466
.10.3390/s22197466
38.
American Petroleum Institute, 2004, “Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries,” American Petroleum Institute, Washington, DC, Report No. API 610.
You do not currently have access to this content.