Abstract

Small centrifugal compressors are employed to boost automotive internal combustion engines or hydrogen fuel cells, amongst other applications. In many scopes, the overall intensity and quality of noise emission is a major concern, so many researchers develop and assess numerical models to predict acoustic spectra. In this work, detached Eddy simulations (DES) of a vaneless centrifugal compressor are conducted to assess the impact of intake geometries on its aeroacoustic performance. Experimental measurements are employed as a means of validation. Flow field analysis and Dynamic Mode Decomposition allow us to analyze the underlying mechanisms of the most relevant acoustic features. This work provides insight into the implications for noise generation of employing tight elbows due to packaging constraints.

References

1.
Shi
,
T.
, and
Peng
,
X.
,
2024
, “
Performance Assessment and Optimization of the Ultra-High Speed Air Compressor in Hydrogen Fuel Cell Vehicles
,”
Appl. Sci.
,
14
(
3
), p.
1232
.10.3390/app14031232
2.
Shi
,
T.
,
Chen
,
Q.
,
Peng
,
X.
,
Feng
,
J.
, and
Guo
,
Y.
,
2023
, “
Multi-Objective Optimization of the Oil-Free Centrifugal Air Compressor in Hydrogen Fuel Cell Vehicles Based on Grey Relational Analysis
,”
Int. J. Hydrogen Energy
,
48
(
67
), pp.
26341
26355
.10.1016/j.ijhydene.2023.03.346
3.
Rong
,
Y.
,
Wang
,
G.
, and
Kong
,
Q.
,
2022
, “
Study on the Influence of Ultra-Thin Non-Oriented Silicon Steel Sheet on the Performance of Ultra-High-Speed Permanent Magnet Motor
,”
AIP Adv.
,
12
(
6
), p.
065307
.10.1063/5.0090234
4.
Kim
,
Y.
,
Engeda
,
A.
,
Aungier
,
R.
, and
Direnzi
,
G.
,
2001
, “
The Influence of Inlet Flow Distortion on the Performance of a Centrifugal Compressor and the Development of an Improved Inlet Using Numerical Simulations
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
3
), pp.
323
338
.10.1243/0957650011538550
5.
Wang
,
L.
,
Yang
,
C.
,
Zhao
,
B.
,
Lao
,
D.
,
Ma
,
C.
, and
Li
,
D.
,
2013
, “
The Change of the Inlet Geometry of a Centrifugal Compressor Stage and Its Influence on the Compressor Performance
,”
J. Therm. Sci.
,
22
(
3
), pp.
197
208
.10.1007/s11630-013-0613-2
6.
Broatch
,
A.
,
Margot
,
X.
,
García-Tíscar
,
J.
, and
Roig
,
F.
,
2018
, “
Impact of Simple Surge-Enhancing Inlet Geometries on the Acoustic Behavior of a Turbocompressor
,”
Int. J. Engine Res.
,
21
(
5
), pp.
794
800
.10.1177/1468087418784125
7.
Broatch
,
A.
,
Ruiz
,
S.
,
García-Tíscar
,
J.
, and
Roig
,
F.
,
2018
, “
On the Influence of Inlet Elbow Radius on Recirculating Backflow, Whoosh Noise and Efficiency in Turbocharger Compressors
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
224
233
.10.1016/j.expthermflusci.2018.03.011
8.
Moritz
,
J.
, and
Becker
,
S.
,
2021
, “
Sound Radiation of the Exhaust Gas Turbocharger as a Function of the Compressor Inflow
,”
J. Sound Vib.
,
498
, p.
115969
.10.1016/j.jsv.2021.115969
9.
Roig
,
F.
,
2023
, “
On the Influence of Inlet Geometry on Turbocharger Compressor Noise
,”
Ph.D. thesis
,
Universitat Politècnica de València
, Valencia, Spain.https://dialnet.unirioja.es/servlet/tesis?codigo=316042
10.
Siemens
,
2013
, “
Simcenter STAR-CCM+
,” Siemens, Version Release Feb. 15, accessed Aug. 26, 2024, https://www.plm.automation.siemens.com/global/es/products/simcenter/STAR-CCM.html
11.
Broatch
,
A.
,
Galindo
,
J.
,
Navarro
,
R.
, and
García-Tíscar
,
J.
,
2014
, “
Methodology for Experimental Validation of a CFD Model for Predicting Noise Generation in Centrifugal Compressors
,”
Int. J. Heat Fluid Flow
,
50
, pp.
134
144
.10.1016/j.ijheatfluidflow.2014.06.006
12.
Broatch
,
A.
,
García-Tíscar
,
J.
,
Roig
,
F.
, and
Sharma
,
S.
,
2019
, “
Dynamic Mode Decomposition of the Acoustic Field in Radial Compressors
,”
Aerosp. Sci. Technol.
,
90
, pp.
388
400
.10.1016/j.ast.2019.05.015
13.
Navarro
,
R.
,
2018
,
Predicting Flow-Induced Acoustics at Near-Stall Conditions in an Automotive Turbocharger Compressor: A Numerical Approach
,
Springer
, Cham, Switzerland.
14.
Sharma
,
S.
,
Broatch
,
A.
,
García-Tíscar
,
J.
,
Nickson
,
A. K.
, and
Allport
,
J. M.
,
2019
, “
Acoustic and Pressure Characteristics of a Ported Shroud Turbocompressor Operating at Near Surge Conditions
,”
Appl. Acoust.
,
148
, pp.
434
447
.10.1016/j.apacoust.2019.01.005
15.
Sundström
,
E.
,
Semlitsch
,
B.
, and
Mihaescu
,
M.
,
2015
, “
Centrifugal Compressor: The Sound of Surge
,”
AIAA
Paper No. 2015-2674.10.2514/6.2015-2674
16.
Semlitsch
,
B.
, and
Mihăescu
,
M.
,
2016
, “
Flow Phenomena Leading to Surge in a Centrifugal Compressor
,”
Energy
,
103
, pp.
572
587
.10.1016/j.energy.2016.03.032
17.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,” Report No.
620532
.10.4271/620532
18.
Futrzynski
,
R.
, and
Efraimsson
,
G.
,
2015
, “
Dymode: A Parallel Dynamic Mode Decomposition Software
,”
KTH Royal Institute of Technology
, accessed Aug. 26, 2024, http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A786623
19.
Kou
,
J.
, and
Zhang
,
W.
,
2017
, “
An Improved Criterion to Select Dominant Modes From Dynamic Mode Decomposition
,”
Eur. J. Mech.-B/Fluids
,
62
, pp.
109
129
.10.1016/j.euromechflu.2016.11.015
20.
Eriksson
,
L. J.
,
1980
, “
Higher Order Mode Effects in Circular Ducts and Expansion Chambers
,”
J. Acoust. Soc. Am.
,
68
(
2
), pp.
545
550
.10.1121/1.384768
21.
Tiikoja
,
H.
,
Rämmal
,
H.
,
Abom
,
M.
, and
Boden
,
H.
,
2011
, “
Investigations of Automotive Turbocharger Acoustics
,”
SAE Int. J. Eng.
,
4
(
2
), pp.
2531
2542
.10.4271/2011-24-0221
22.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Margot
,
X.
, and
García-Tíscar
,
J.
,
2016
, “
Experimental Methodology for Turbocompressor in-Duct Noise Evaluation Based on Beamforming Wave Decomposition
,”
J. Sound Vib.
,
376
, pp.
60
71
.10.1016/j.jsv.2016.04.035
You do not currently have access to this content.