Abstract

Labyrinth seal flutter is a critical phenomenon in turbomachinery, as it can lead to severe structural vibrations and potential component damage. Accurate prediction and mitigation of flutter are paramount to ensuring the reliability and performance of modern turbomachinery systems. This paper explores the numerical computation of a labyrinth seal flutter test case using a low Mach preconditioned harmonic balance (HB) solver and investigates how this approach can improve the accuracy and response time of flutter computations. HB solvers have gained prominence in turbomachinery computations for their ability to efficiently capture unsteady flow phenomena and significantly reduce computational time compared to time-domain analyses. In labyrinth seals, however, the flow is often characterized by low Mach numbers, and preconditioning for these conditions has been shown to significantly improve convergence and accuracy. The goal of this paper is to demonstrate how to implement low Mach preconditioning in a HB solver in the frequency domain. We employ iterative preconditioning to alleviate the stiffness associated with density-based solvers under low Mach conditions and analyze the effect of the preconditioning parameters on the convergence rate. Furthermore, we address inaccuracies linked to the classical Roe solver in low Mach scenarios by adapting it to the low Mach preconditioned governing equations. Through the combined utilization of iterative preconditioning and a preconditioned Roe solver, this study aims to improve convergence rates and the overall quality of flutter predictions. We demonstrate the method with an academic labyrinth seal test case originally presented by Corral et al. (“Higher Order Conceptual Model for Labyrinth Seal Flutter,” ASME J. Turbomach., 143(7), p. 071006). While previous investigations have primarily relied on linearized frequency domain solvers and reduce-order models, in this research a preconditioned HB solver is applied to this test case.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinmetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
NASA
, Cleveland, OH, Report No.
NASA/TM-2006-214341
.https://ntrs.nasa.gov/api/citations/20060051674/downloads/20060051674.pdf
2.
Lewis
,
D.
,
Platt
,
C.
, and
Smith
,
E.
,
1978
, “
Aeroelastic Instability in F100 Labyrinth Air Seals
,”
AIAA
Paper No. 78-1087.10.2514/6.1978-1087
3.
Alford
,
J. S.
,
1964
, “
Protection of Labyrinth Seals From Flexural Vibration
,”
ASME J. Eng. Power
,
86
(
2
), pp.
141
147
.10.1115/1.3677564
4.
Ehrich
,
F.
,
1968
, “
Aeroelastic Instability in Labyrinth Seals
,”
ASME J. Eng. Power
,
90
(
4
), pp.
369
374
.10.1115/1.3609221
5.
Abbott
,
D. R.
,
1981
, “
Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention
,”
ASME J. Eng. Power
,
103
(
2
), pp.
308
312
.10.1115/1.3230721
6.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2003
, “
Application of CFD Analysis for Rotating Machinery: Part 2 - Labyrinth Seal Analysis
,”
ASME J. Eng. Gas Turbines Power
, 127(4), pp.
820
826
.10.1115/1.1808426
7.
Phibel
,
R.
,
di Mare
,
L.
,
Green
,
J. S.
, and
Imregun
,
M.
,
2009
, “
Numerical Investigation of Labyrinth Seal Aeroelastic Stability
,”
ASME
Paper No. GT2009-60017.10.1115/GT2009-60017
8.
Di Mare
,
L.
,
Imregun
,
M.
,
Green
,
J. S.
, and
Sayma
,
A. I.
,
2010
, “
A Numerical Study of Labyrinth Seal Flutter
,”
ASME J. Tribol.
,
132
(
2
), p.
022201
.10.1115/1.3204774
9.
Miura
,
T.
, and
Sakai
,
N.
,
2019
, “
Numerical and Experimental Studies of Labyrinth Seal Aeroelastic Instability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111005
.10.1115/1.4044353
10.
Corral
,
R.
, and
Vega
,
A.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models-Part I: Theoretical Support
,”
ASME J. Turbomach.
,
140
(
12
), p.
121006
.10.1115/1.4041373
11.
Vega
,
A.
, and
Corral
,
R.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models-Part II: Physical Interpretation
,”
ASME J. Turbomach.
,
140
(
12
), p.
121007
.10.1115/1.4041377
12.
Greco
,
M.
, and
Corral
,
R.
,
2021
, “
Numerical Validation of an Analytical Seal Flutter Model
,”
J. Global Power Propul. Soc.
,
5
, pp.
191
201
.10.33737/jgpps/141210
13.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
14.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Schlüß
,
D.
,
2019
, “
Flutter Analysis of a Transonic Steam Turbine Blade With Frequency and Time-Domain Solvers
,”
Int. J. Turbomach., Propul. Power
,
4
(
2
), p.
15
.10.3390/ijtpp4020015
15.
Turkel
,
E.
,
1999
, “
Preconditioning Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
385
416
.10.1146/annurev.fluid.31.1.385
16.
Howison
,
J.
, and
Ekici
,
K.
,
2013
, “
Unsteady Analysis of Wind Turbine Flows Using the Harmonic Balance Method
,”
AIAA
Paper No. 2013-1107.10.2514/6.2013-1107
17.
Djeddi
,
R.
,
Howison
,
J.
, and
Ekici
,
K.
,
2016
, “
A Fully Coupled Turbulent Low-Speed Preconditioner for Harmonic Balance Applications
,”
Aerosp. Sci. Technol.
,
53
, pp.
22
37
.10.1016/j.ast.2016.02.037
18.
Chorin
,
A. J.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
,
2
(
1
), pp.
12
26
.10.1016/0021-9991(67)90037-X
19.
Venkateswaran
,
S.
, and
Merkle
,
C.
,
1995
, “
Dual Time-Stepping and Preconditioning for Unsteady Computations
,”
AIAA
Paper No. 95-0078.10.2514/6.1995-78
20.
Campobasso
,
M. S.
, and
Baba-Ahmadi
,
M. H.
,
2012
, “
Analysis of Unsteady Flows Past Horizontal Axis Wind Turbine Airfoils Based on Harmonic Balance Compressible Navier–Stokes Equations With Low-Speed Preconditioning
,”
ASME J. Turbomach.
,
134
(
6
), p.
061020
.10.1115/1.4006293
21.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
22.
Hope-Collins
,
J.
, and
di Mare
,
L.
,
2023
, “
Artificial Diffusion for Convective and Acoustic Low Mach Number Flows I: Analysis of the Modified Equations, and Application to Roe-Type Schemes
,”
J. Comput. Phys.
,
475
, p.
111858
.10.1016/j.jcp.2022.111858
23.
Godfrey
,
A.
,
Walters
,
R.
, and
van Leer
,
B.
,
1993
, “
Preconditioning for the Navier–Stokes Equations With Finite-Rate Chemistry
,”
AIAA
Paper No. 93-0535.10.2514/6.93-0535
24.
Potsdam
,
M.
,
Sankaran
,
V.
, and
Pandya
,
S.
,
2007
, “
Unsteady Low Mach Preconditioning With Application to Rotorcraft Flows
,”
AIAA
Paper No. 2007-4473.10.2514/6.2007-4473
25.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.10.1115/GT2014-25230
26.
Turkel
,
E.
,
1987
, “
Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations
,”
J. Comput. Phys.
,
72
(
2
), pp.
277
298
.10.1016/0021-9991(87)90084-2
27.
Weiss
,
J. M.
, and
Smith
,
W. A.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.10.2514/3.12946
28.
Darmofal
,
D.
, and
Siu
,
K.
,
1999
, “
A Robust Multigrid Algorithm for the Euler Equations With Local Preconditioning and Semi-Coarsening
,”
J. Comput. Phys.
,
151
(
2
), pp.
728
756
.10.1006/jcph.1999.6216
29.
Sivel
,
P.
, and
Frey
,
C.
,
2022
, “
Low Mach Preconditioned Non-Reflecting Boundary Conditions for the Harmonic Balance Solver
,”
8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS
, Oslo, Norway, June 5–8.10.23967/eccomas.2022.170
30.
Viozat
,
C.
,
1997
, “
Implicit Upwind Schemes for Low Mach Number Compressible Flows
,”
INRIA
, Rocquencourt, France, Report No.
RR-3084
.https://inria.hal.science/inria-00073607/file/RR-3084.pdf
31.
Corral
,
R.
,
Greco
,
M.
, and
Vega
,
A.
,
2021
, “
Higher Order Conceptual Model for Labyrinth Seal Flutter
,”
ASME J. Turbomach.
,
143
(
7
), p.
071006
.10.1115/1.4050334
32.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
33.
Müller
,
M.
,
Kersken
,
H.-P.
, and
Frey
,
C.
,
2022
, “
A Log-w Turbulence Model Formulation for Flutter Analysis With Harmonic Balance
,”
16th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines ISUAAAT16
, Toledo, Spain, Sept.
19
23
.https://www.researchgate.net/publication/366987137_A_Logw_Turbulence_Model_Formulation_for_Flutter_Analysis_with_Harmonic_Balance
34.
Kato
,
M.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
, Kyoto, Japan, Aug. 16–18, Paper No.
10
4
.https://www.researchgate.net/publication/247931894_The_Modelling_of_Turbulent_Flow_Around_Stationary_and_Vibrating_Square_Cylinders
35.
Erturk
,
E.
,
2009
, “
Discussions on Driven Cavity Flow
,”
Int. J. Numer. Methods Fluids
,
60
(
3
), pp.
275
294
.10.1002/fld.1887
You do not currently have access to this content.