Abstract

The increasing electrification of aircraft propulsion systems is leading to new control architectures being developed to address integration between electric machines (EMs) and gas-based turbine engines. For hybrid-electric propulsion systems, current conceptual architectures often couple electric machines with the shafts of gas turbine engines and introduce energy storage. Leveraging the electrical power system of hybridized engines, turbine electrified energy management (TEEM) is a recent control approach that improves transient operability in an effort to enable more efficient and lighter weight turbomachinery. This study seeks to expand TEEM's application beyond traditional proportional-integral (PI) control by presenting linear model predictive control (MPC) schemes to execute the TEEM concept. Through constraint selection and cost function design, transient operability goals for TEEM are considered with no external logic or saturation. Unique to the designs are the use of a washout filter, which simplifies transient detection and motor activation logic. The proposed architectures are implemented with both centralized MPC (CMPC) and distributed MPC (DMPC) approaches, and comparisons are drawn to a benchmark PI controller simulated on a nonlinear turbofan engine model at one ground condition and one cruise condition. Performance is evaluated using compressor maps, stall margin performance, and two novel metrics: transient stack usage (TSU) and transient excursion integral (TEI). Results reveal that the linear MPC scheme performs comparably to the baseline controller and can be implemented in at least two distinct configurations with potential for further modifications, thus establishing the groundwork for future investigations.

References

1.
Pearce
,
B.
,
2019
, “
NASA Aeronautics Strategic Implementation Plan 2019 Update
,” accessed Feb. 12, 2020, https://www.nasa.gov/wp-content/uploads/2015/11/sip-2019-v7-web.pdf
2.
Simon
,
D. L.
,
Connolly
,
J. W.
, and
Culley
,
D. E.
,
2020
, “
Control Technology Needs for Electrified Aircraft Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011025
.10.1115/1.4044969
3.
Schneider
,
M.
,
Dickhoff
,
J.
,
Kusterer
,
K.
,
Visser
,
W.
,
Stumpf
,
E.
,
Hofmann
,
J.-P.
, and
Bohn
,
D.
,
2019
, “
Development of a Gas Turbine Concept for Electric Power Generation in a Commercial Hybrid Electric Aircraft
,”
ASME
Paper No. GT2019-92065.10.1115/GT2019-92065
4.
Richter
,
H.
,
Connolly
,
J. W.
, and
Simon
,
D. L.
,
2020
, “
Optimal Control and Energy Management for Hybrid Gas-Electric Propulsion
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091009
.10.1115/1.4047890
5.
Sahoo
,
S.
,
Kavvalos
,
M. D.
,
Diamantidou
,
D. E.
, and
Kyprianidis
,
K. G.
,
2023
, “
System-Level Assessment of a Partially Distributed Hybrid Electric Propulsion System
,”
ASME. J. Eng. Gas Turbines Power
, 145(2), p.
021030
.10.1115/1.4055827
6.
Papadopoulos
,
K. I.
,
Nasoulis
,
C. P.
,
Ntouvelos
,
E. G.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2022
, “
Power Flow Optimization for a Hybrid-Electric Propulsion System
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111013
.10.1115/1.4055478
7.
Culley
,
D. E.
,
Kratz
,
J. L.
, and
Thomas
,
G. L.
,
2018
, “
Turbine Electrified Energy Management (TEEM) for Enabling More Efficient Engine Designs
,”
AIAA
Paper No. 2018-4798. 10.2514/6.2018-4798
8.
Kratz
,
J. L.
,
Culley
,
D. E.
, and
Thomas
,
G. L.
,
2019
, “
A Control Strategy for Turbine Electrified Energy Management
,”
AIAA
Paper No. 2019-4499. 10.2514/6.2019-4499
9.
Kratz
,
J. L.
,
Culley
,
D. E.
, and
Thomas
,
G. L.
,
2019
, “
Evaluation of Electrical System Requirements for Implementing Turbine Electrified Energy Management
,”
AIAA
Paper No. 2019-4502. 10.2514/6.2019-4502
10.
Kratz
,
J. L.
, and
Simon
,
D.
,
2022
, “
Failure Modes and Mitigation Strategies for a Turboelectric Aircraft Concept With Turbine Electrified Energy Management
,”
AIAA
Paper No. 2022-1191. 10.2514/6.2022-1191
11.
Kratz
,
J. L.
, and
Culley
,
D. E.
,
2021
, “
Enhancement of a Conceptual Hybrid Electric Tilt-Wing Propulsion System Through Application of the Turbine Electrified Energy Management Concept
,”
AIAA
Paper No. 2021-0875. 10.2514/6.2021-0875
12.
Kratz
,
J.
,
Connolly
,
J.
,
Amthor
,
A.
,
Buescher
,
H.
,
Bianco
,
S.
, and
Culley
,
D.
,
2022
, “
Turbine Electrified Energy Management for Single Aisle Aircraft
,” 2022 IEEE Transportation Electrification Conference & Expo (
ITEC
), Anaheim, CA, June 15–17, pp.
658
663
.10.1109/IT EC53557.2022.9813818
13.
Kratz
,
J.
,
2023
, “
Transient Optimization of a Gas Turbine Engine
,”
AIAA
Paper No. 2023-0703. 10.2514/6.2023-0703
14.
Rawlings
,
J. B.
, and
Mayne
,
D. Q.
,
2009
,
Model Predictive Control: Theory and Design
, 2nd ed.,
Nob Hill Publishing
,
Madison, WI
.
15.
Seok
,
J.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2016
, “
Integrated/Coordinated Control of Aircraft Gas Turbine Engine and Electrical Power System: Towards Large Electrical Load Handling
,” 2016 IEEE 55th Conference on Decision and Control (
CDC
), Las Vegas, NV, Dec. 12–14, pp.
3183
3189
.10.1109/CDC.2016.7798747
16.
Seok
,
J.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2017
, “
Coordinated Model Predictive Control of Aircraft Gas Turbine Engine and Power System
,”
J. Guid. Control, Dyn.
,
40
(
10
), pp.
2538
2555
.10.2514/1.G002562
17.
Dunham
,
W.
,
Hencey
,
B.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2017
, “
Predictive Propulsion and Power Control for Large Transient Power Loads in a More Electric Aircraft
,” 2017 American Control Conference (
ACC
), Seattle, WA, May 24–26, pp.
4055
4061
.10.23919/ACC.2017.7963577
18.
Seok
,
J.
,
Reed
,
D. M.
,
Kolmanovsky
,
I. V.
, and
Girard
,
A. R.
,
2018
, “
Coordinated Model Predictive Control of Aircraft Gas Turbine Engine With Simplified Electrical System Model
,” 2018 Annual American Control Conference (
ACC
), Milwaukee, WI, June 27–29, pp.
1460
1466
.10.23919/ACC.2018.8431504
19.
Dunham
,
W.
,
Hencey
,
B.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2019
, “
Scenario Based Stochastic MPC for More Electric Aircraft Coordinated Engine and Power Management
,” 2019 American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
4223
4228
.10.23919/ACC.2019.8814639
20.
Doff-Sotta
,
M.
,
Cannon
,
M.
, and
Bacic
,
M.
,
2020
, “
Optimal Energy Management for Hybrid Electric Aircraft
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
6043
6049
.10.1016/j.ifacol.2020.12.1672
21.
Almeida
,
F.
,
2022
, “
Management of Electrical Power Generation on Gas Turbine With Model Predictive Control
,”
AIAA
Paper No. 2022-0444. 10.2514/6.2022-0444
22.
Dunham
,
W.
,
Hencey
,
B.
,
Girard
,
A. R.
, and
Kolmanovsky
,
I.
,
2020
, “
Distributed Model Predictive Control for More Electric Aircraft Subsystems Operating at Multiple Time Scales
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2177
2190
.10.1109/TCST.2019.2932654
23.
Jiang
,
Z.
, and
Pakmehr
,
M.
,
2022
, “
Model Predictive Control for Distributed Electric Propulsion of eVTOL Vehicles: A Preliminary Design
,”
AIAA
Paper No. 2022-0878. 10.2514/6.2022-0878
24.
Negenborn
,
R.
, and
Maestre
,
J.
,
2014
, “
Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities
,”
IEEE Control Syst. Mag.
,
34
(
4
), pp.
87
97
.10.1109/MCS.2014.2320397
25.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2017
, “
Control Design for an Advanced Geared Turbofan Engine
,”
AIAA
Paper No. 2017-4820. 10.2514/6.2017-4820
26.
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
May
,
R. D.
,
Litt
,
J. S.
, and
Guo
,
T.-H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
,”
NASA
,
Cleveland, OH
, Report No.
NASA/TM-2014-216638
.https://ntrs.nasa.gov/citations/20140012486
27.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2018
, “
An Approach for Utilizing Power Flow Modeling for Simulations of Hybrid Electric Propulsion Systems
,”
AIAA
Paper No. 2018-5018. 10.2514/6.2018-5018
28.
Kratz
,
J. L.
,
Culley
,
D. E.
, and
Lehan
,
J.
,
2023
, “
Transient Optimization for the Betterment of Turbine Electrified Energy Management
,”
AIAA
Paper No. 2023-0704. 10.2514/6.2023-0704
29.
Haley
,
P.
, and
Soloway
,
D.
,
1996
, “
Experimental Validation of Generalized Predictive Control for Active Flutter Suppression
,”
Proceeding of the 1996 IEEE International Conference on Control Applications
, Dearborn, MI, Sept. 15–Nov. 18, pp.
125
129
.10.1109/CCA.1996.558618
30.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Comput.
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
You do not currently have access to this content.